【題目】已知拋物線,且過拋物線焦點
作直線交拋物線所得最短弦長為
,過點
作斜率存在的動直線
與拋物線
交于
兩點.
(1)求拋物線的方程;
(2)若過點作
軸的垂線
,則
軸上是否存在一點
,使得直線
與直線
的交點恒在一條直線上?若存在,求該點的坐標及該定直線的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】從某小區抽取50戶居民進行月用電量調查,發現其用電量都在50到350度之間,頻率分布直方圖如圖1.
A類用戶 | B類用戶 | |||||||
9 | 7 | 7 | 0 | 6 | ||||
8 | 6 | 5 | 1 | 7 | 8 | 9 | ||
9 | 8 | 2 | 8 | 5 | 6 | 7 | 8 | |
8 | 7 | 1 | 0 | 9 | 7 | 8 | 9 |
圖2
(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;(2)若將用電量在區間
內的用戶記為
類用戶,標記為低用電家庭,用電量在區間
內的用戶記為
類用戶,標記為高用電家庭,現對這兩類用戶進行問卷調查,讓其對供電服務進行打分,打分情況見莖葉圖2;若打分超過85分視為滿意,沒超過85分視為不滿意,請填寫下面列聯表,并根據列聯表判斷是否有
的把握認為“滿意度與用電量高低有關”?
滿意 | 不滿意 | 合計 | |
| |||
| |||
合計 |
附表及公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直圖,如右圖所示.經銷商為下一個銷售季度購進了130t該農產品.以(單位:t,100≤
≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(Ⅰ)將T表示為的函數;
(Ⅱ)根據直方圖估計利潤T不少于57000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種新產品,從產品中抽取100件作為樣本,測量這些產品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖.
(1)用每組區間的中點值代表該組數據,估算這批產品的樣本平均數和樣本方差的
;
(2)從指標值落在的產品中隨機抽取2件做進一步檢測,設抽取的產品的指標在
的件數為
,求
的分布列和數學期望;
(3)由頻率分布直方圖可以認為,這種產品的質量指標值服從正態分布,
近似為樣本平均值
,
近似為樣本方差
,若產品質量指標值大于236.6,則產品不合格,該廠生產10萬件該產品,求這批產品不合格的件數.
參考數據:,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,、
是兩個小區所在地,
、
到一條公路
的垂直距離分別為
,
,
兩端之間的距離為
.
(1)某移動公司將在之間找一點
,在
處建造一個信號塔,使得
對
、
的張角與
對
、
的張角相等,試確定點
的位置.
(2)環保部門將在之間找一點
,在
處建造一個垃圾處理廠,使得
對
、
所張角最大,試確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過橢圓的左頂點
作斜率為2的直線,與橢圓的另一個交點為
,與
軸的交點為
,已知
.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點
,且與直線
相交于點
,若
軸上存在一定點
,使得
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據中國生態環境部公布的2017年、2018年長江流域水質情況監測數據,得到如下餅圖:
則下列說法錯誤的是( )
A.2018年的水質情況好于2017年的水質情況
B.2018年與2017年相比較,Ⅰ、Ⅱ類水質的占比明顯增加
C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質
D.2018年Ⅰ、Ⅱ類水質的占比超過
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com