日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x3-3a|x-1|(a∈R)
(Ⅰ)當a=2時,求f(x)在區間x∈[0,
3
]上的最值;
(Ⅱ)求函數f(x)的單調區間.
分析:(Ⅰ)當a=2時,f(x)=x3-6|x-1|=
x3-6x+6,x≥1
x3+6x-6,x<1
f(x)=
3x2-6,x≥1
3x2+6,x<1
,令f′(x)>0,得x<1或x>
2
,令f′(x)<0,得1<x<
2
.結合x∈[0,
3
]
,能求出f(x)在區間x∈[0,
3
]上的最值.
(2)由f(x)=x3-3a|x-1|=
x3-3ax+3a,x≥1
x3+3ax-3a,x<1
,知f(x)=
3x2-3a,x≥1
3x2+3a,x<1
,分類討論能求出函數f(x)的單調區間.
解答:解:(Ⅰ)當a=2時,f(x)=x3-6|x-1|=
x3-6x+6,x≥1
x3+6x-6,x<1
,
f(x)=
3x2-6,x≥1
3x2+6,x<1

令f′(x)>0,得x<1或x>
2
,
令f′(x)<0,得1<x<
2

x∈[0,
3
]
,
∴f(x)在[0,1]上單調遞增,在[1,
2
]上單調遞減,在
2
,
3
]
上單調遞增.
∵f(0)=-6,f(
2
) =2
2
-6
2
+6=6-4
2
<-6

∴f(x)min=-6.
∵f(1)=1-6+6=1,f(
3
)=3
3
-6
3
+6
=6-3
3
<1,
∴f(x)max=1.
(2)∵f(x)=x3-3a|x-1|=
x3-3ax+3a,x≥1
x3+3ax-3a,x<1
,
f(x)=
3x2-3a,x≥1
3x2+3a,x<1

分類討論如下:
①當a=0時,∵f′(x)=3x2≥0,
∴f(x)在實數集R上單調遞增;
②當a>0時,
(i)當x<1時,f′(x)=3x2+3a>0,∴f(x)在(-∞,1)上遞增;
(ii)當x≥1時.令f′(x)=0,得x=
a
x=-
a
(舍),比較
a
與1的大小,再分類如下:
當0<a≤1時,∵f′(x)=3x2-3a≥0,∴f(x)在(1,+∞)上遞增;
當a>1時,由f′(x)=3x2-3a<0,得1<x<
a
;由f′(x)=3x2-3a≥0,得x>
a
,
∴f(x)在(1,
a
)遞減,在(
a
,+∞)
上遞增.
③當a<0時,
此時,當x≥1時,f′(x)=3x2-3a≥0,∴f(x)在(1,+∞)上遞增;
當x<1時,令f′(x)=0,得x=-
-a
x=
-a

比較
-a
與1的大小,再分類討論如下:
(i)當
-a
<1
,即-1<a<0時,
由f′(x)=3x2+3a>0,得x∈(-∞,-
-a
)∪(
-a
,1)

由f′(x)<0,得x∈(-
-a
,
-a
)
,
∴f(x)在(-∞-
a
)
(
-a
,1)
上單調遞增,在(-
-a
,
-a
)
上單調遞減;
(ii)當
-a
≥1
,即a≤-1時,
由f′(x)=3x2+3a>0,得x∈(-∞,-
-a
)
,
由f′(x)<0,得x∈(-
-a
,1)
,
∴f(x)在(-∞,-
a
)
上單調遞增,在(-
-a
,1)
上單調遞減.
綜上所述:
當a>1時,f(x)在(-∞,1)上單調遞增,在(1,
a
)遞減,在(
a
,+∞)
上遞增;
當0≤a<1時,f(x)在R上單調遞增;
當-1<a<0時,f(x)在(-∞,-
-a
)上單調遞增,在(- 
-a
,
-a
)
單調遞減,在(
-a
,+∞
)單調遞增;
當a≤-1時,f(x)在(-∞,-
-a
)
上單調遞增,在(-
-a
,1)上單調遞減,在(1,+∞)單調遞增.
點評:本題考查函數最值的求法和函數的單調區間的討論.考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯,是高考的重點.解題時要認真審題,仔細解答.易錯點是分類不清導致出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 狠狠操av | 美女久久久久久 | 亚洲成人a v | 国产精品一区二区三区不卡 | 亚洲在线视频 | 中文一区二区 | 涩涩视频免费看 | 日本久久网| 日韩免费一区二区三区 | 国产成人三级 | 黄色在线免费网站 | 免费不卡视频 | 日韩大片在线观看 | 一级片在线播放 | 爱爱免费网站 | 成年人国产 | 欧美另类激情 | 国产成人在线观看免费网站 | 麻豆视频一区二区 | 亚洲视频在线视频 | 成人动漫一区二区 | 日韩三级黄色片 | 色婷婷在线播放 | www.狠狠 | www.久久久| 国产成人午夜高潮毛片 | 91福利在线观看 | 国产在线网站 | 亚洲黄色大片 | 日本一区二区在线播放 | 国产视频999 | 91视频亚洲 | 亚洲最大黄色 | 91片黄在线观看 | 免费黄色一级 | 精品一区二区三区四区 | 亚洲综合影院 | 日韩网站免费观看 | 国产中文字幕在线播放 | 一区二区三区视频 | 久久精品导航 |