已知圓O:交
軸于A,B兩點,曲線C是以
為長軸,離心率為
的橢圓,其左焦點為F.若P是圓O上一點連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,橢圓的離心率為
,直線
和
所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設直線與橢圓M有兩個不同的交點
與矩形ABCD有兩個不同的交點
.求
的最大值及取得最大值時m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標原點,且
.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知圓過橢圓
的兩焦點,與橢圓有且僅有兩個公共點;直線
與圓
相切 ,與橢圓
相交于
兩點記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)已知拋物線D的頂點是橢圓的中心,焦點與該橢圓的右焦點重合。
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A,B兩點
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓O:,點O為坐標原點,一條直線
:
與圓O相切并與橢圓
交于不同的兩點A、B
(1)設,求
的表達式;
(2)若,求直線
的方程;
(3)若,求三角形OAB面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com