【題目】設函數f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1為函數y=f(x)ex的一個極值點,則下列圖象不可能為y=f(x)的圖象是( )
A. B.
C. D.
【答案】D
【解析】
先求出函數f(x)ex的導函數,利用x=﹣1為函數f(x)ex的一個極值點可得a,b,c之間的關系,再代入函數f(x)=ax2+bx+c,對答案分別代入驗證,看哪個答案不成立即可.
解:由y=f(x)ex=ex(ax2+bx+c)y′=f′(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=﹣1為函數f(x)ex的一個極值點可得,﹣1是方程ax2+(b+2a)x+b+c=0的一個根,
所以有a﹣(b+2a)+b+c=0c=a.
法一:所以函數f(x)=ax2+bx+a,對稱軸為x,且f(﹣1)=2a﹣b,f(0)=a.
對于A,由圖得a>0,f(0)>0,f(﹣1)=0,不矛盾,
對于B,由圖得a<0,f(0)<0,f(﹣1)=0,不矛盾,
對于C,由圖得a<0,f(0)<0,x0b>0f(﹣1)<0,不矛盾,
對于D,由圖得a>0,f(0)>0,x1b>2af(﹣1)<0與原圖中f(﹣1)>0矛盾,D不對.
法二:所以函數f(x)=ax2+bx+a,由此得函數相應方程的兩根之積為1,對照四個選項發現,D不成立.
故選:D.
科目:高中數學 來源: 題型:
【題目】高三一班、二班各有6名學生去參加學校組織的高中數學競賽選拔考試,成績如莖葉圖所示.
(1)若一班、二班6名學生的平均分相同,求值;
(2)若將競賽成績在、
、
內的學生在學校推優時,分別賦分、2分、3分,現在從一班的6名參賽學生中選兩名,求推優時,這兩名學生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域為的函數
滿足:對于任意的實數
都有
成立,且當
時,
.
(Ⅰ)判斷函數的奇偶性,并證明你的結論;
(Ⅱ)證明在
上為減函數;
(Ⅲ)若,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點、
的坐標分別是
,
,直線
,
相交于點
,且它們的斜率之積為
.
(1)求動點的軌跡方程;
(2)若過點的直線
交動點
的軌跡于
、
兩點, 且
為線段
,
的中點,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義在R上的奇函數,且當x≥0時,f(x)=-x2+ax.
(1)若a=-2,求函數f(x)的解析式;
(2)若函數f(x)為R上的單調減函數,
①求a的取值范圍;
②若對任意實數m,f(m-1)+f(m2+t)<0恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數f(x)是奇函數”的充要條件
B. 若p:,
,則
:
,
C. “若,則
”的否命題是“若
,則
”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式()x+(
)x-m≥0在x∈(-∞,1]時恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com