【題目】已知函數,
.
(1)討論函數的單調性;
(2)若在定義域內恒成立,求實數
的取值范圍.
【答案】(1)見解析(2)或
.
【解析】試題分析:
(1)由題意可得: .分類討論:
①若時,,
在
上是增函數.
②若 時,則
在
上是增函數.在
上是減函數.
(2)不等式恒成立,則:①當,
同時恒成立時,
②當,
同時恒成立時,
③當時,∵
為增函數,
為減函數,
綜上: 或
.
試題解析:
解:(1)
.
①若時,
,則
在
上是增函數.
②若在
上是增函數.
在
上是減函數.
(2)若在定義域內恒成立,考慮以下情形:
①當,
同時恒成立時,
由,
恒成立.
得: .
∵由,
恒成立得:
.∴
.
②當,
同時恒成立時,
不存在;
③當時,∵
為增函數,
為減函數,
若它們有共同零點,則恒成立.
由,
,聯立方程組解得:
.
綜上: 或
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內,當x= 時,f(x)取得最大值3;當x=
時,f(x)取得最小值﹣3.
(1)求函數f(x)的解析式;
(2)求函數f(x)的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
,
為邊
的中點,將
沿直線
翻轉成
.若
為線段
的中點,則在
翻折過程中:
①是定值;②點
在某個球面上運動;
③存在某個位置,使;④存在某個位置,使
平面
.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“隨機模擬方法”計算曲線與直線
,
所圍成的曲邊三角形的面積時,用計算機分別產生了10個在區間
上的均勻隨機數
和10個區間
上的均勻隨機數
(
,
),其數據如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個曲邊三角形面積的一個近似值是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項和為Sn , 且滿足a1=1,an+1=2 +1,n∈N* .
(1)求a2的值;
(2)求數列{an}的通項公式;
(3)是否存在正整數k,使ak , S2k﹣1 , a4k成等比數列?若存在,求k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 =
+
.
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)=
+(2m+
)|
|+m2的最小值為5,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數f(x)零點個數;
(2)若對x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個實數根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當x=﹣1時,函數f(x)有最小值0;
②對任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為
,
為
的中點,
為線段
上的動點,過點
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫出所有正確命題的編號).
①當時,
為四邊形;②當
時,
為等腰梯形;
③當時,
與
的交點
滿足
;
④當時,
為五邊形;
⑤當時,
的面積為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com