日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x+
tx
(t>0)
和點P(1,0),過點P作曲線y=f(x)的兩條切線PM,PN,切點分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2是關于x的方程x2+2tx-t=0的兩根;
(2)設|MN|=g(t),求函數g(t);
(3)在(2)的條件下,若在區間[2,16]內總存在m+1個實數a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求實數m的最大值.
分析:(1)用導數值與切線的斜率相等,求出切點橫坐標的關系,判斷是方程x2+2tx-t=0的兩根即可;
(2)求過切點的切線方程,找出兩切點關系,再利用兩點間的距離公式求解即可;
(3)利用函數的單調性轉化為恒成立問題.
解答:解:(1)函數f(x)=x+
t
x
(t>0)
可得f′(x)=1-
t
x2
,切點(x,x+
t
x
),所以
x+
t
x
x-1
=1-
t
x2

可得x2+2tx-t=0,顯然方程的兩個根就是切點分別為M(x1,y1),N(x2,y2)的橫坐標,
所以x1,x2是關于x的方程x2+2tx-t=0的兩根;
(2)因為M、N兩點的橫坐標分別為x1、x2
又f′(x)=1-
t
x2
,∴切線PM的方程為:y-(x1+
t
x1
)=(1-
t
x
2
1
)(x-x1).
又∵切線PM過點P(1,0),∴有0-(x1+
t
x1
)=(1-
t
x
2
1
)(1-x1).
即x12+2tx1-t=0.(1)
同理,由切線PN也過點(1,0),得x22+2tx2-t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx-t=0的兩根,
x1+x2=-2t
x1x2=-t
   (*)
|MN|=
(x1-x2)2+(x1+
t
x1
 -x2-
t
x2
 )2

=
(x1-x2)2[1+(1-
t
x1x2
 )2]

=
[(x1+x2)2-4x1x2][1+(1-
t
x1x2
 )2]

把(*)式代入,得|MN|=2
5t2+5t

因此,函數g(t)的表達式為g(t)=2
5t2+5t
(t>0)
(3)易知g(t)在區間[2,16]上為增函數,
∴g(2)≤g(ai)(i=1,2,m+1).
則m•g(2)≤g(a1)+g(a2)+…+g(am).
∵g(a1)+g(a2)+…+g(am)<g(am+1)對一切正整數n成立,
∴不等式m•g(2)<g(16)對一切的正整數n恒成立m2
5×4+5×2
<2
5×162+5×16

即m<
85×16
30
=
80
3
對一切的正整數n恒成立
由于m為正整數,∴m≤6.又當m=6時,存在a1=a2=am=2,am+1=16,對所有的n滿足條件.
因此,m的最大值為6.
點評:本題第一問比較基礎,二三問比較復雜,考切線問題,和數列問題,又滲透了恒成立思想,此題比較新,雖是壓軸題但并不像以往壓軸題的思路,有突破有創新,仔細審題是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x-2m2+m+3(m∈Z)為偶函數,且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數a,使g(x)在區間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022

已知函數f(x)的圖像在[a,b]上連續不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題

已知函數f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數,g(x)是奇函數,則f(x)+g(x)是奇函數
B.f(x)是偶函數,g(x)是偶函數,則f(x)+g(x)是偶函數
C.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)一定是奇函數或偶函數
D.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)可以是奇函數或偶函數

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲视频在线观看 | 亚洲欧美在线视频 | 进去里视频在线观看 | 黄色一级免费看 | 亚洲 欧美 激情 另类 校园 | 国产一区二区三区久久 | 欧美一区不卡 | 亚洲欧美一区二区三区四区 | 亚洲毛片在线 | 丨国产丨调教丨91丨 | 性欧美69| 三级黄色片| 欧洲精品一区二区 | 日韩一区二区三区在线 | 日本成人久久 | 国产在线不卡视频 | 久久婷婷色 | 亚洲精品日韩精品 | 黄色一级片网站 | 亚洲最新网址 | 一级黄色大片 | 国产精品美女在线 | 国产日本在线 | 日韩精品中文字幕在线观看 | 国产精品va | 久久98 | 精品少妇av | 青青草国产成人av片免费 | 日本大尺度吃奶做爰久久久绯色 | 国产精品久久久久久久久久久久午夜片 | 免费观看av | 美日韩一区二区三区 | 色吧综合 | 一区二区影院 | 日韩黄色片 | 精品日韩一区二区三区 | 天堂av网站 | 中文文字幕文字幕高清 | 黄色成人在线观看 | 中文字幕亚洲精品 | 欧美又粗又长 |