建造一個容量為8m3,深度為2m的長方體無蓋水池,如果池底和池壁的造價每平方分別為180元和80元,求水池的最低總造價,并求此時水池的長和寬.
【答案】
分析:設池長為xm(x>0),池寬為ym,總造價為z,故xy=4.水池總造價y=2×(2x+2y)×80+xy×180,由此能求出水池最低總造價.
解答:解:設池長為xm(x>0),池寬為ym,總造價為z,故xy=4.
水池總造價y=2×(2x+2y)×80+xy×180
=720+320(x+y)
≥

=2000.
當x=y,即x=2時等號成立,函數取最小值.
答:當池長和池寬都為2m,水池最低總造價為2000元.
點評:本題考查函數在實際問題中的合理運用,解題時要認真審題,仔細解答,注意合理地進行等價轉化.