日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖所示,已知D是面積為1的△ABC的邊AB上任一點,E是邊AC上任一點,連接DE,F是線段DE上一點,連接BF,設,且,記△BDF的面積為s=f(λ1,λ2,λ3),則S的最大值是( )
【注:必要時,可利用定理:若a,b,c∈R+,則,(當且僅當a=b=c時,取“=”)】

A.
B.
C.
D.
【答案】分析:由三角形ABC的面積為1且 可求三角形ADE的面積,再由△DMB∽△DEA可得 從而有 ,求出三角形DEF的面積之后,利用基本不等式可求面積的最大值
解答:解:分別過B,A作BM⊥DE,AN⊥DE,垂足分別為M,N,設MB=h1,AN=h2
=1λ2
∴S△ADE1λ2S△ABC1λ2
∵△DMB∽△DNA
=
從而有 ==
∴S2•λ3(1-λ1=
當且僅當 λ23=1-λ1=取等號即S的最大值為
故選:D


點評:本題以向量的共線為切入點,利用向量的共線轉化為線段的長度關系,解決本題的關鍵是根據三角形的面積公式先求出三角形ADE的面積;關鍵二是把所求的三角形的面積與三角形ADE的面積之間通過三角形的像似建立聯系.本題是一道構思非常巧妙的試題,要求考試不但要熟練掌握基礎知識,更要具備綜合解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•九江一模)如圖所示,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中點.
(1)求證:平面PCD∥平面MBE;
(2)設PA=λAB,當二面角D-ME-F的大小為135°,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知在直三棱柱ABO-A1B1O1中,∠AOB=
π2
,AO=2,BO=6,D為A1B1的中點,且異面直線OD與A1B垂直,則三棱柱ABO-A1B1O1的高是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,已知ABCD是正方形,邊長為2,PD⊥平面ABCD.
(1)若PD=2,①求異面直線PC與BD所成的角,②求二面角D-PB-C的余弦值;
③在PB上是否存在E點,使PC⊥平面ADE,若存在,確定點E位置,若不存在說明理由;
(2)若PD=m,記二面角D-PB-C的大小為θ,若θ<60°,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知正四棱錐S—ABCD側棱長為,底面邊長為,E是SA的中點,則異面直線BE與SC所成角的大小為                         (    )

A.90°                                   B.60°

C.45°                                   D.30°

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省高三一輪復習質量檢測理科數學 題型:選擇題

如圖所示,已知正四棱錐S—ABCD側棱長為,底面邊長為,E是SA的中點,則異面直線BE與SC所成角的大小為                         (    )

A.90°     B.60°      C.45°      D.30°

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色亚洲网站 | 日韩国产一区二区三区 | 日韩av在线免费播放 | 理论黄色片 | 亚洲精品久久久久久久久久久久久 | 欧美一区二区三区啪啪 | 成人免费毛片高清视频 | 成人亚洲一区二区 | 日韩国产欧美视频 | 久久成人免费 | 成人av播放 | 欧美99| 午夜影院免费体验区 | 午夜视频网址 | 日韩污视频在线观看 | 欧美在线视频一区二区 | 久久99精品久久久久久久久久久久 | 久久久99精品免费观看 | 国产精品久久久久久久久 | 免看一级一片 | 亚洲一区中文字幕 | 日韩精品中文字幕一区二区三区 | 国产又粗又大又爽视频 | 99久久99| 国产传媒自拍 | 精品久久网 | 亚洲欧美激情精品一区二区 | 午夜免费片| 中文字幕在线观看不卡 | 国产欧美日韩综合精品 | 成人免费视频毛片 | 天天艹综合 | 韩国三级中文字幕hd有奶水 | 国产一区日韩 | 9191视频 | 欧美成人一区二区三区片免费 | 免费福利片2020潦草影视午夜 | 三级成人 | 成人特级毛片 | 99精品免费在线 | 犬夜叉在线观看 |