日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
函數f(x)=aex,g(x)=lnx-lna,其中a為常數,且函數y=f(x)和y=g(x)的圖象在其與坐標軸的交點處的切線互相平行.
(Ⅰ)求此平行線的距離;
(Ⅱ)若存在x使不等式
x-m
f(x)
x
成立,求實數m的取值范圍;
(Ⅲ)對于函數y=f(x)和y=g(x)公共定義域中的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
(Ⅰ)f'(x)=aexg′(x)=
1
x

y=f(x)的圖象與坐標軸的交點為(0,a),y=g(x)的圖象與坐標軸的交點為(a,0),
∵函數y=f(x)和y=g(x)的圖象在其與坐標軸的交點處的切線互相平行
∴f'(0)=g'(a),即a=
1
a

又∵a>0,∴a=1.
∴f(x)=ex,g(x)=lnx,
∴函數y=f(x)和y=g(x)的圖象在其坐標軸的交點處的切線方程分別為:x-y+1=0,x-y-1=0
∴兩平行切線間的距離為
2

(Ⅱ)由
x-m
f(x)
x
x-m
ex
x
,故m<x-
x
ex
在x∈[0,+∞)有解,
h(x)=x-
x
ex
,則m<hmax(x).
當x=0時,m<0;
當x>0時,∵h′(x)=1-(
1
2
x
ex+
x
ex)=1-(
1
2
x
+
x
)ex

∵x>0,∴
1
2
x
+
x
≥2
1
2
x
x
=
2
 , ex>1
,∴(
1
2
x
+
x
)ex
2

h′(x)=1-(
1
2
x
+
x
)ex<0

h(x)=x-
x
ex
在區間[0,+∞)上單調遞減,故h(x)max=h(0)=0,∴m<0
即實數m的取值范圍為(-∞,0).
(Ⅲ)證法一:∵函數y=f(x)和y=g(x)的偏差為:F(x)=|f(x)-g(x)|=ex-lnx,x∈(0,+∞)
F′(x)=ex-
1
x

設x=t為F′(x)=ex-
1
x
=0
的解,則當x∈(0,t),F'(x)<0;
當x∈(t,+∞),F'(x)>0,∴F(x)在(0,t)單調遞減,在(t,+∞)單調遞增
F(x)min=et-lnt=et-ln
1
et
=et+t

∵f'(1)=e-1>0,f′(
1
2
)=
e
-2<0
,∴
1
2
<t<1

F(x)min=et+t=e
1
2
+
1
2
=
e
+
1
2
2.25
+
1
2
=2

即函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
證法二:由于函數y=f(x)和y=g(x)的偏差:F(x)=|f(x)-g(x)|=ex-lnx,x∈(0,+∞)
F1(x)=ex-x,x∈(0,+∞);令F2(x)=x-lnx,x∈(0,+∞)
F1(x)=ex-1F2(x)=1-
1
x
=-
1-x
x

∴F1(x)在(0,+∞)單調遞增,F2(x)在(0,1)單調遞減,在(1,+∞)單調遞增
∴F1(x)>F1(0)=1,F2(x)≥F2(1)=1,
∴F(x)=ex-lnx=F1(x)+F2(x)>2
即函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數,且函數y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.若關于x的不等式
x-m
g(x)
x
對任意不等于1的正實數都成立,則實數m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•眉山二模)函數f(x)=aex,g(x)=lnx-lna,其中a為常數,且函數y=f(x)和y=g(x)的圖象在其與坐標軸的交點處的切線互相平行.
(Ⅰ)求此平行線的距離;
(Ⅱ)若存在x使不等式
x-m
f(x)
x
成立,求實數m的取值范圍;
(Ⅲ)對于函數y=f(x)和y=g(x)公共定義域中的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aex+2x2在(0,f(0))處的切線與直線2x-y-3=0平行,則a=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=aex,g(x)=lnx-lna,其中a為常數,且函數y=f(x)和y=g(x)的圖象在其與坐標軸的交點處的切線互相平行
(1)求函數y=g(x)的解析式;
(2)若關于x的不等式
x-m
g(x)
x
恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數,且函數y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.
(1)求實數a的值;
(2)若關于x的不等式
x-m
g(x)
x
對任意不等于1的正實數都成立,求實數m的取值集合.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品日韩视频 | 欧美一区在线看 | av在线播放网站 | 欧美日韩精品一区二区三区在线观看 | 蜜桃中文字幕 | www国产亚洲 | 欧美片网站 | 2018啪一啪| 狠狠色综合网站久久久久久久 | 精品一区二区三区在线观看 | 亚洲日韩中文字幕 | 国产福利一区二区三区在线观看 | 国产 日韩 欧美 中文 在线播放 | 这里有精品在线视频 | 91精品资源 | 日韩国产高清在线 | 91人人射| 亚洲精品久久久久久一区二区 | 国产精品视频一区二区噜噜 | 成人av免费在线观看 | 色av综合在线 | 久久久久久久久久国产 | 久久这里只有精品首页 | 特级毛片www | 91玖玖| 黄页网站在线免费观看 | 亚洲精品99 | 日韩精品无码一区二区三区 | 欧美日韩中文国产一区 | 又大又粗又长又黄视频 | 中文字幕一区二区三区乱码图片 | 日日精品 | 久久精品成人 | 99精品免费 | 国产欧美日本 | 久艹伊人 | 久久毛片 | 欧美午夜网 | 福利91| 国产精品视频 | 欧美一区二区三区视频 |