【題目】在直角坐標系xOy中,已知曲線C1:(α為參數),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos
=-
,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求證:BC⊥AF;
(2)求幾何體EF-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F、P、Q分別是BC、C1D1、AD1、BD的中點.
(1)求證:PQ∥平面DCC1D1;
(2)求證:AC⊥EF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為(a>0,β為參數).以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos
=
.
(1)若曲線C與l只有一個公共點,求a的值;
(2)A,B為曲線C上的兩點,且∠AOB=,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且 +
=
.
(1)證明:sinAsinB=sinC;
(2)若b2+c2﹣a2= bc,求tanB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調性;
(2)確定a的所有可能取值,使得f(x)> ﹣e1﹣x在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】實數a,b滿足ab>0且a≠b,由a、b、、
按一定順序構成的數列( )
A. 可能是等差數列,也可能是等比數列
B. 可能是等差數列,但不可能是等比數列
C. 不可能是等差數列,但可能是等比數列
D. 不可能是等差數列,也不可能是等比數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinxcosx+cos2x-
.
(Ⅰ)求函數f(x)的最小正周期及單調遞增區間;
(Ⅱ)將函數f(x)圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數g(x)的圖象.若關于x的方程g(x)-k=0,在區間[0,]上有實數解,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com