【題目】在直角坐標系中,點
的坐標為
,直線
的參數方程為
(
為參數).以坐標原點
為極點,以
軸的非負半軸為極軸,選擇相同的單位長度建立極坐標系,圓
極坐標方程為
.
(Ⅰ)當時,求直線
的普通方程和圓
的直角坐標方程;
(Ⅱ)直線與圓
的交點為
、
,證明:
是與
無關的定值.
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(單位:毫米,以下同),按規定直徑在
內為優質品,現從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數據整理如下:
(1)根據以上統計數據完成下面列聯表,并回答是否有
以上的把握認為“桔柚直徑與所在基地有關”?
(2)求優質品率較高的基地的500個桔柚直徑的樣本平均數 (同一組數據用該區間的中點值作代表);
(3)記甲基地直徑在范圍內的五個桔柚分別為
,現從中任取二個,求含桔柚
的概率.
附: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
(1)現按分層抽樣從質量為,
的芒果中隨機抽取
個,再從這
個中隨機抽取
個,記隨機變量
表示質量在
內的芒果個數,求
的分布列及數學期望.
(2)以各組數據的中間數代表這組數據的平均值,將頻率視為概率,某經銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質量低于克的芒果以
元/個收購,高于或等于
克的以
元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年6月深圳地鐵總公司對深圳地鐵1號線30個站的工作人員的服務態度進行了滿意度調查,其中世界之窗、白石洲、高新園、深大、桃園、大新6個站的得分情況如下:
地鐵站 | 世界之窗 | 白石州 | 高新園 | 深大 | 桃園 | 大新 |
滿意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6個站的平均得分為75分.
(1)求大新站的滿意度得分x,及這6個站滿意度得分的標準差;
(2)從表中前5個站中,隨機地選2個站,求恰有1個站得分在區間(68,75)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的圓心到直線
的距離;
(2)設圓與直線
交于點
,
,若點
的坐標為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程是:
(
是參數,
是常數).以
為極點,
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
相交于
、
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓與圓相切,且與圓
相內切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點作OQ的平行線交曲線C于M,N兩個不同的點, 求△QMN面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com