日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在三棱錐A-BCD中,面ABC⊥面BCD,△ABC是正三角形,∠BCD=90°,∠CBD=30°.
(Ⅰ)求證:AB⊥CD;
(Ⅱ)求二面角D-AB-C的大小;
(Ⅲ)求異面直線AC與BD所成角的大小.
分析:解法一:
(1)根據平面與平面垂直的性質定理可得:CD⊥面ABC,所以DC⊥AB.
(2)由(Ⅰ)知CD⊥面ABC.二面角的度量關鍵在于找出它的平面角,構造平面角常用的方法就是三垂線法.過點C作CM⊥AB于M,連接DM.所以∠CMD是二面角D-AB-C的平面角.
(3)求異面直線所成的角,一般有兩種方法,一種是幾何法,其基本解題思路是“異面化共面,認定再計算”,即利用平移法和補形法將兩條異面直線轉化到同一個三角形中,結合余弦定理來求.還有一種方法是向量法,即建立空間直角坐標系,利用向量的代數法和幾何法求解.取三邊AB、AD、BC的中點M、N、O,連接AO、MO、NO、MN、OD,則OM∥AC,OM=
1
2
AC
;MN∥BD,MN=
1
2
BD

∴∠OMN是異面直線AC與BD所成的角或其補角.
解法二:
以點O為原點,OM所在直線為x軸,OC所在直線為y軸,OA所在直線為z軸,建立空間直角坐標系.這種解法的好處就是:(1)解題過程中較少用到空間幾何中判定線線、面面、線面相對位置的有關定理,因為這些可以用向量方法來解決.(2)即使立體感稍差一些的學生也可以順利解出,因為只需畫個草圖以建立坐標系和觀察有關點的位置即可.
(1)設CD=1,則O(0,0,0),A(0,0,
3
2
)
B(0,-
3
2
,0)
C(0,
3
2
,0)
D(1,
3
2
,0)
.故由
AB
CD
=0
得:
AB
CD
,即AB⊥CD.
(2)由CD⊥平面ABC得,平面ABC的法向量為
CD
=(1,0,0)
,設平面ABD的法向量為
n
=(x,y,z)
,所以這兩個法向量的夾角的大小(正值)即為二面角D-AB-C的大小;
(3)因為
BD
=(1,
3
,0)
AC
=(0,
3
2
,-
3
2
)
,故異面直線AC和BD所成角的大小即為
BD
AC
的夾角的大小.
解答:解法一:
(Ⅰ)證明:∵面ABC⊥面BCD,∠BCD=90°,且面ABC∩面BCD=BC,
∴CD⊥面ABC.(2分)
又∵AB?面ABC,
∴DC⊥AB.(4分)
(Ⅱ)解:如圖,過點C作CM⊥AB于M,連接DM.
精英家教網
由(Ⅰ)知CD⊥面ABC.
∴CM是斜線DM在平面ABC內的射影,
∴DM⊥AB.(三垂線定理)
∴∠CMD是二面角D-AB-C的平面角.(6分)
設CD=1,由∠BCD=90°,∠CBD=30°得BC=
3
,BD=2.
∵△ABC是正三角形,
CM=
3
2
•BC=
3
2

tan∠CMD=
CD
CM
=
2
3

∠CMD=arctan
2
3

∴二面角D-AB-C的大小為arctan
2
3
.(9分)
(Ⅲ)解:如圖,取三邊AB、AD、BC的中點M、N、O,
連接AO、MO、NO、MN、OD,
則OM∥AC,OM=
1
2
AC
;MN∥BD,MN=
1
2
BD

∴∠OMN是異面直線AC與BD所成的角或其補角.(11分)
∵△ABC是正三角形,且平面ABC⊥平面BCD,
∴AO⊥面BCD,△AOD是直角三角形,ON=
1
2
AD

又∵CD⊥面ABC,故AD=
DC2+AC2
=2ON=2

在△OMN中,OM=
3
2
,MN=1,ON=1.
cos∠OMN=
1
2
MO
MN
=
3
4

∴異面直線AC和BD所成角為arccos
3
4
.(14分)
解法二:
(Ⅰ)分別取BC、BD的中點O、M,連接AO、OM.
∵△ABC是正三角形,
∴AO⊥BC.
∵面ABC⊥面BCD,且面ABC∩面BCD=BC,
∴AO⊥平面BCD.
∵OM是△BCD的中位線,且CD⊥平面ABC,
∴OM⊥平面ABC.
以點O為原點,OM所在直線為x軸,OC所
在直線為y軸,OA所在直線為z軸,建立空間
直角坐標系.(2分)
精英家教網
設CD=1,則O(0,0,0),A(0,0,
3
2
)
B(0,-
3
2
,0)
C(0,
3
2
,0)
D(1,
3
2
,0)

AB
=(0,-
3
2
,-
3
2
)
CD
=(1,0,0)
.(4分)
AB
CD
=0×1+(-
3
2
)×0+(-
3
2
)×0=0

AB
CD
,即AB⊥CD.(6分)
(Ⅱ)∵CD⊥平面ABC,
∴平面ABC的法向量為
CD
=(1,0,0)
.(7分)
設平面ABD的法向量為
n
=(x,y,z)

AB
=(0,-
3
2
,-
3
2
)
AD
=(1,
3
2
,-
3
2
)

n
AB
=0×x+(-
3
2
)×y+(-
3
2
)×z=0

3
y+3z=0
n
AD
=1×x+
3
2
×y+(-
3
2
)×z=0

2x+
3
y-3z=0

∴令y=
3
,則x=-3,z=-1.
n
=(-3,
3
,-1)
.(9分)

cos<
CD
n
>=
CD
n
|
CD
|•|
n
|
=
-3×1+
3
×0+(-1)×0
(-3)2+(
3
)
2
+(-1)2
12+02+02
=-
3
13
13

∵二面角D-AB-C是銳角,
∴二面角D-AB-C的大小為arccos
3
13
13
.(11分)
(Ⅲ)∵
BD
=(1,
3
,0)
AC
=(0,
3
2
,-
3
2
)

cos<
BD
AC
>=
BD
AC
|
BD
|•|
AC
|
=
1×0+
3
×
3
2
+0×(-
3
2
)
12+(
3
)
2
+02
02+(
3
2
)
2
+(-
3
2
)
2
=
3
4

∴異面直線AC和BD所成角為arccos
3
4
.(14分)
點評:本小題主要考查棱錐的結構特征,二面角和線面關系等基本知識,同時考查空間想象能力和推理、運算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐A-BCD中,側面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個側面是正三角形.
(1)求證:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動點D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當點D運動到線段AB的中點時,求二面角D-CO-B的大小;
(Ⅲ)當CD與平面AOB所成角最大時,求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點B到平面ACD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
π6
,斜邊AB=4,動點D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)當D為AB的中點時,求:異面直線AO與CD所成角大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐A-BCD中,側面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個側面是正三角形
(1)求證:AD⊥BC
(2)求二面角B-AC-D的大小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久久 | 中文字幕乱码一区二区三区 | 精品久久影院 | 精品视频在线免费观看 | 国产精品久久久一区二区 | 国产欧美久久一区二区三区 | 国产精品亚洲视频 | 日韩一区二区不卡 | 国产精品一区二区三区网站 | 国产一区二区在线播放 | 国模精品视频一区二区 | 这里只有精品在线视频观看 | 不卡成人 | 天天射欧美 | 日韩精品一区二区三区视频播放 | 亚洲精品久久久久久一区二区 | 久草新免费 | 国产一区二区在线免费观看 | 伊人免费在线观看高清版 | 免费 视频 1级 | 日韩亚洲视频 | 色综合五月婷婷 | 国产精品大全 | 日韩成人精品 | 日本在线看 | 欧美精品久久久久久久久老牛影院 | 久久伊人免费视频 | 国产精品人人做人人爽人人添 | 欧美视频在线一区 | 欧美成人手机在线 | 夜夜爽网址 | 一区二区三区日本 | 欧美日韩在线观看中文字幕 | 日韩国产中文字幕 | 国产一区二区三区四区五区 | 欧美变态网站 | 一区二区三区回区在观看免费视频 | 欧美日本久久 | 欧美一区二区三区在线观看视频 | 手机看片福利一区 | 久久国产一区二区 |