日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數).
(1)設u=x1x2,求u的取值范圍;
(2)求證:當k≥1時不等式對任意(x1,x2)∈D恒成立;
(3)求使不等式對任意(x1,x2)∈D恒成立的k2的范圍.
【答案】分析:(1)利用基本不等式,其中和為定值,積有最大值;
(2)結合(1)中的范圍直接將左邊展開,利用u在上單調遞增即可,或者作差法比較;
(3)結合(2)將(3)轉化為求使恒成立的k的范圍,利用函數的單調性解決,或者作差法求解.
解答:解:(1),當且僅當時等號成立,
故u的取值范圍為
(2)解法一(函數法)=
,又k≥1,k2-1≥0,
∴在上是增函數
所以
=
即當k≥1時不等式成立.
解法二(不等式證明的作差比較法)

=
=
=,
將k2-4x1x2=(x1-x22代入得:

=
∵(x1-x22≥0,k≥1時4-k2x1x2-4k2=4(1-k2)-k2x1x2<0,

即當k≥1時不等式成立.
(3)解法一(函數法)
=,

即求使恒成立的k2的范圍.
由(2)知,要使
對任意(x1,x2)∈D恒成立,必有0<k<1,
因此1-k2>0,
∴函數上遞減,在上遞增,
要使函數f(u)在上恒有,必有,即k4+16k2-16≤0,
解得
解法二(不等式證明的作差比較法)
由(2)可知=,
要不等式恒成立,必須4-k2x1x2-4k2≥0恒成立
恒成立
,即k4+16k2-16≤0,
解得
因此不等式恒成立的k2的范圍是
點評:本題考查不等式的綜合應用,以及利用轉化思想、函數思想轉化為函數問題利用函數的單調性解決不等式問題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數).
(1)設u=x1x2,求u的取值范圍;
(2)求證:當k≥1時不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立;
(3)求使不等式(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立的k2的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合D={( x1,x2)|x 1>0,x 2>0,x1+x2=k },其中k為正常數
(1)若k=2,且u=x1?x2,求u的取值范圍
(2)若k=2,且y=(
1
x1
-x1)(
1
x2
-x2)
,求y的取值范圍.
(3)設y1=(
1
x1
-x1)(
1
x2
-x2)
,y2=(
k
2
-
2
k
)2
,探究判斷y1和y2的大小關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(。┳C明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數學 來源:湖南省長沙市一中2010屆高三上學期第二次月考(理) 題型:解答題

 已知集合D = {(x1,x2)|x1>0,x2>0,x1 + x2 = k,k為正常數}.

(Ⅰ)設u = x1x2,(x1x2) ∈D,u的取值范圍T;

(Ⅱ)求證:當k≥1時,不等式對任意(x1,x2) ∈D恒成立;

(Ⅲ)求使不等式對任意(x1,x2) ∈D恒成立的k的范圍.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩成人高清电影 | 国产精品美女www爽爽爽软件 | 国产欧美一区二区精品婷婷 | av国产在线被下药迷网站 | 精品综合| 久久久久久久av | 日韩和的一区二区 | 精品国产91乱码一区二区三区 | 欧美电影一区 | 色综合天天综合网国产成人网 | 日韩在线播放网址 | 94国产精品 | 欧美精品久久久久久久亚洲调教 | 国产精品欧美久久久久一区二区 | 亚洲精品成人av | 男人的天堂一级片 | 亚洲高清在线观看 | hd国产人妖ts另类视频 | 日韩av手机在线免费观看 | 五月婷婷在线视频观看 | 日韩欧美国产一区二区 | 色婷婷综合五月天 | www.欧美 | 日韩欧美不卡 | 精品久久中文 | 精品国产91亚洲一区二区三区www | 人操人人人 | 国产三级 | 成年人在线视频免费观看 | 欧美精品99| 尤物久久av一区二区三区亚洲 | 97在线播放 | 精品久久久久av | 日韩精品在线免费观看 | 91成人区| 久久精品福利 | 在线一区观看 | 99精品视频在线观看 | 国产精品国产三级国产aⅴ无密码 | 色婷婷综合久久久久中文一区二区 | xxxx免费视频 |