日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ln(ex+k)(k為常數)是實數集R上的奇函數
(1)求k的值
(2)若函數g(x)=λf(x)+sinx是區間[-1,1]上的減函數,且g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍
(3)討論關于x的方程
lnxf(x)
=x2-2ex+m
的根的個數.
分析:(1)因為定義域是實數集R,直接利用奇函數定義域內有0,則f(-0)=-f(0)即f(0)=0,即可求k的值;
(2)先利用函數g(x)的導函數g'(x)=λ+cosx≤0在[-1,1]上恒成立,求出λ的取值范圍以及得到g(x)的最大值g(-1)=-1-sin1;然后把g(x)≤t2+λt+1在x∈[-1,1]上恒成立轉化為-λ-sin1≤t2+λt+1(λ≤-1),整理得(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立,再利用一次函數的思想方法求解即可.
(3)先把方程轉化為
lnx
x
=x2-2ex+m,令F(x)=
lnx
x
(x>0),G(x)=x2-2ex+m  (x>0),再利用導函數分別求出兩個函數的單調區間,進而得到兩個函數的最值,比較其最值即可得出結論.
解答:解:(1)因為函數f(x)=ln(ex+k)(k為常數)是實數集R上的奇函數,
所以f(-0)=-f(0)即f(0)=0,
則ln(e0+k)=0解得k=0,
顯然k=0時,f(x)=x是實數集R上的奇函數;
(2)由(1)得f(x)=x所以g(x)=λx+sinx,g'(x)=λ+cosx,
因為g(x) 在[-1,1]上單調遞減,∴g'(x)=λ+cosx≤0  在[-1,1]上恒成立,
∴λ≤-1,g(x)max=g(-1)=-λ-sin1,
只需-λ-sin1≤t2+λt+1(λ≤-1),
∴(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立,
令h(λ)=(t+1)λ+t2+sin1+1(λ≤-1)
t+1≤0
h(-1)=-t-1+t2+sin1+1≥0
解得t≤-1
(3)由(1)得f(x)=x
∴方程轉化為
lnx
x
=x2-2ex+m,令F(x)=
lnx
x
(x>0),G(x)=x2-2ex+m  (x>0),(8分)
∵F'(x)=
1-lnx
x2
,令F'(x)=0,即
1-lnx
x2
=0,得x=e
當x∈(0,e)時,F'(x)>0,∴F(x)在(0,e)上為增函數;
當x∈(e,+∞)時,F'(x)<0,F(x)在(e,+∞)上為減函數;(9分)
當x=e時,F(x)max=F(e)=
1
e
(10分)
而G(x)=(x-e)2+m-e2   (x>0)
∴G(x)在(0,e)上為減函數,在(e,+∞)上為增函數;(11分)
當x=e時,G(x)min=m-e2(12分)
∴當m-e2
1
e
,即m>e2+
1
e
時,方程無解;
當m-e2=
1
e
,即m=e2+
1
e
時,方程有一個根;
當m-e2
1
e
,即m<e2+
1
e
時,方程有兩個根;(14分)
點評:本題主要考查函數奇偶性的性質,函數恒成立問題以及導數在最大值、最小值問題中的應用,是對知識的綜合考查,屬于難題.
在涉及到奇函數定義域內有0時,一般利用結論f(0)=0來作題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99久久98精品免观看软件 | 午夜免费看片 | 成人高清视频在线观看 | 黄av在线免费观看 | 亚洲精品二区 | 日韩精品www | 99精品99| 欧美电影一区二区三区 | 国产免费久久 | 黄色影视在线免费观看 | 亚洲日日操 | 国产成人精品免费 | 久久久一区二区三区 | 亚洲香蕉在线观看 | 伊人av超碰久久久麻豆 | 久久婷婷色 | 欧美久久一区二区 | 午夜精品久久久久久久久久久久 | 久久亚洲一区二区三区成人国产 | 成人免费视频播放 | 国产精品国产精品国产专区不卡 | 日韩在线看片 | 亚洲日本乱码在线观看 | eeuss影院一区二区三区 | 欧美a级成人淫片免费看 | 午夜精品久久久久久久久久久久久 | 免费国产一区二区 | 国产成人av一区二区 | 久久成人精品视频 | 国产精品免费在线 | 国产美女福利 | 永久黄网站色视频免费 | av综合在线观看 | 日韩大片免费看 | 日韩在线播放欧美字幕 | 午夜在线一区 | 欧美成人精品一区二区男人看 | 欧美日韩在线观看中文字幕 | 成年入口无限观看网站 | 欧美18免费视频 | 久久综合精品视频 |