【題目】由甲、乙、丙三個人組成的團隊參加某項闖關游戲,第一關解密碼鎖,3個人依次進行,每人必須在1分鐘內完成,否則派下一個人.3個人中只要有一人能解開密碼鎖,則該團隊進入下一關,否則淘汰出局.根據以往100次的測試,分別獲得甲、乙解開密碼鎖所需時間的頻率分布直方圖.
(1)若甲解開密碼鎖所需時間的中位數為47,求a、b的值,并分別求出甲、乙在1分鐘內解開密碼鎖的頻率;
(2)若以解開密碼鎖所需時間位于各區間的頻率代替解開密碼鎖所需時間位于該區間的概率,并且丙在1分鐘內解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨立.
①求該團隊能進入下一關的概率;
②該團隊以怎樣的先后順序派出人員,可使所需派出的人員數目X的數學期望達到最小,并說明理由.
【答案】(1),
,甲、乙在1分鐘內解開密碼鎖的頻率分別是0.9,0.7;(2)①0.985;②先派出甲,再派乙,最后派丙.
【解析】
(1)根據頻率分布直方圖中左右兩邊矩形面積均為計算出中位數,可得出
、
的值,再分別計算甲、乙在
分鐘內解開密碼鎖的頻率值;
(2)①利用獨立事件概率的乘法公式可計算出所求事件的概率;
②分別求出先派甲和先派乙時隨機變量的數學期望,比較它們的大小,即可得出結論。
(1)甲解開密碼鎖所需時間的中位數為47,
,解得
;
,解得
;
∴甲在1分鐘內解開密碼鎖的頻率是;
乙在1分鐘內解開密碼鎖的頻率是;
(2)由(1)知,甲在1分鐘內解開密碼鎖的頻率是0.9,乙是0.7,丙是0.5,
且各人是否解開密碼鎖相互獨立;
①令“團隊能進入下一關”的事件為,“不能進入下一關”的事件為
,
,
∴該團隊能進入下一關的概率為;
②設甲、乙、丙三個人各自能完成任務的概率分別p1,p2,p3,且p1,p2,p3互不相等,
根據題意知X的取值為1,2,3;
則,
,
,
,
,
若交換前兩個人的派出順序,則變為,
由此可見,當時,
交換前兩人的派出順序可增大均值,應選概率大的甲先開鎖;
若保持第一人派出的人選不變,交換后兩人的派出順序,
,
∴交換后的派出順序則變為,
當時,交換后的派出順序可增大均值;
所以先派出甲,再派乙,最后派丙,
這樣能使所需派出的人員數目的均值(數學期望)達到最小.
科目:高中數學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用x表示活動推出的天數,y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:
(I)根據散點圖判斷在推廣期內,與
(c,d為為大于零的常數)哪一個適宜作為掃碼支付的人次y關于活動推出天數x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(I)的判斷結果求y關于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次.
參考數據:
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的傾斜角為
,且經過點
,以坐標原點O為極點,
軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足|
,記點N的軌跡為曲線C.
(1)①設動點,記
是直線
的向上方向的單位方向向量,且
,以t為參數求直線
的參數方程
②求曲線C的極坐標方程并化為直角坐標方程;
(2)設直線與曲線C交于P,Q兩點,求
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫院為篩查某種疾病,需要檢驗血液是否為陽性,現有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗
次;②混合檢驗,將其
(
且
)份血液樣本分別取樣混合在一起檢驗.若檢驗結果為陰性,這
份的血液全為陰性,因而這
份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為
.
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)運用概率統計的知識,若,試求
關于
的函數關系式
;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求
的最大值.
參考數據:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線方程與
,點
在
上運動,點
在
上運動,且線段
的長為定值
.
(Ⅰ)求線段的中點
的軌跡方程;
(Ⅱ)設直線與點
的軌跡相交于
,
兩點,
為坐標原點,若
,求原點
的直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓
,動圓
與圓
外切并與圓
內切,圓心
的軌跡為曲線
.
(1)求的方程;
(2)若直線與曲線
交于
兩點,問是否在
軸上存在一點
,使得當
變動時總有
?若存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的參數方程為
(
為參數),直線
經過點
且傾斜角為
.
(1)求曲線的極坐標方程和直線
的參數方程;
(2)已知直線與曲線
交于
,滿足
為
的中點,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com