【題目】定義函數如下:對于實數
,如果存在整數
,使得
,則
.則下列結論:①
是實數
上的遞增函數;②
是周期為1的函數;③
是奇函數;④函數
的圖像與直線
有且僅有一個交點.則正確結論的序號是______.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸長為
.
(1)求的方程;
(2)如圖,經過橢圓左頂點且斜率為
的直線
與
交于
兩點,交
軸于點
,點
為線段
的中點,若點
關于
軸的對稱點為
,過點
作
(
為坐標原點)垂直的直線交直線
于點
,且
面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若無窮數列滿足:
是正實數,當
時,
,則稱
是“
—數列”.
(1)若是“
—數列”且
,寫出
的所有可能值;
(2)設是“
—數列”,證明:
是等差數列當且僅當
單調遞減;
是等比數列當且僅當
單調遞增;
(3)若是“
—數列”且是周期數列(即存在正整數
,使得對任意正整數
,都有
),求集合
的元素個數的所有可能值的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
為正整數,一個正整數數列
滿足
.對
,定義集合
.數列
中的
是集合
中元素的個數.
(1)若數列為5,3,3,2,1,1,寫出數列
;
(2)若,
,
為公比為
的等比數列,求
;
(3)對,定義集合
,令
是集合
中元素數的個數.求證:對
,均有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是無窮數列,滿足
.
(1)若,
,求
、
、
的值;
(2)求證:“數列中存在
使得
”是“數列
中有無數多項是
”的充要條件;
(3)求證:在數列中
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康。經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加。為了更好的制定2019年關于加快提升農民年收人力爭早日脫貧的工作計劃,該地扶貧辦統計了2018年位農民的年收人并制成如下頻率分布直方圖:
(1)根據頻率分布直方圖,估計位農民的年平均收入
(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入服從正態分布
,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
.利用該正態分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區約有占總農民人數的的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了位農民。若每個農民的年收人相互獨立,問:這
位農民中的年收入不少于
千元的人數最有可能是多少?
附:參考數據與公式
則①;②
;③
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com