日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

9、已知函數(shù)f(x)在(-∞,+∞)上是增函數(shù),a、b∈R,對命題:“若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”.寫出逆命題、逆否命題,判斷真假,并證明你的結(jié)論.
分析:本題考察的知識點是四種間的逆否關(guān)系及四種命題,由已知函數(shù)f(x)在(-∞,+∞)上是增函數(shù),我們可以先判斷原命題的真假,然后根據(jù)互為逆否命題的真假性相同,我們也可以得到其逆否命題真假;然后再證明其否命題的真假,再根據(jù)其否命題與其逆命題也互為逆否命題,真假性也相同,即可得到其逆命題的真假.
解答:解:先證原命題:
“若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”為真.
a+b≥0?a≥-b,b≥-a
?f(a)≥f(-b),f(b)≥f(-a)
?f(a)+f(b)≥f(-b)+f(-a).
故其逆否命題:“若f(a)+f(b)<f(-a)+f(-b),則a+b<0”也為真.
再證否命題“若a+b<0,則f(a)+f(b)<f(-a)+f(-b)”為真.
a+b<0?a<-b,b<-a
?f(a)<f(-b),f(b)<f(-a)
?f(a)+f(b)<f(-b)+f(-a).
故其逆命題:“若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0”也為真.
點評:已知原命題,寫出它的其他三種命題,首先把原命題改寫成“若p,則q”的形式,然后找出其條件p和結(jié)論q,再根據(jù)四種命題的定義寫出其他命題.逆命題:“若q,則p”;否命題:“若?p,則?q”;逆否命題:“若?q,則?p”,對寫出的命題也可簡潔表述;對于含有大前提的命題,在改寫命題形式時,大前提不要動.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知函數(shù)f(x)在R上是減函數(shù),A(0,-2),B(-3,2)是其圖象上的兩點,那么不等式-2<f(x)<2的解集是
{x|-3<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是
y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(1,f(1))處的切線方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),則x的取值范圍是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
2
-(1+2a)x+
4a+1
2
ln(2x+1)
,a>0.
(Ⅰ)已知函數(shù)f(x)在x=2取得極小值,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a>
1
4
時,若存在x0∈(
1
2
,+∞),使得f(x0)<
1
2
-2a2
,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久久久国产精品入口麻豆 | 精品亚洲一区二区 | 亚洲精品99 | 国产日韩精品视频 | 成人欧美一区二区三区黑人孕妇 | 国产精品毛片一区二区在线看 | 久久av一区二区三区 | 国产天堂一区二区 | 蜜桃精品视频在线 | 天天干 夜夜操 | 影音先锋中文字幕在线 | 亚洲三级在线免费观看 | 欧美视频免费在线 | 天天干天天添 | 91在线一区 | 91福利在线播放 | 成人午夜在线视频 | 日本美女黄网站 | av电影一区| 男女羞羞视频在线 | 中文字幕亚洲一区二区三区 | 亚洲成av人乱码色午夜 | 91精品久久久久久久久 | 久久一 | 免费看黄色的网站 | 黄色电影网站在线观看 | 黄色片在线播放 | 亚洲va一区二区 | 人人看黄色 | 久久久亚洲成人 | 欧美自拍视频 | 欧美a在线 | 国产成人一区二区 | 亚洲精品日韩激情在线电影 | 国产精品久久久久无码av | 91麻豆精品一二三区在线 | a资源在线 | 天堂va | 亚洲精品在线播放 | 男女视频在线观看 | 91精品久久久久久久久 |