日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有兩個零點x1,x2,則x1+x2的取值范圍是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

分析 由題意可知:當x≥1時,f(x)+1≥1,f[f(x)+1]=ln(f(x)+1),當x<1,f(x)=1-$\frac{x}{2}$>$\frac{1}{2}$,f[f(x)+1]=ln(f(x)+1),f[f(x)+1]=ln(f(x)+1)+m=0,則x1+x2=et+2-2t,t>$\frac{1}{2}$,設g(t)=et+2-2t,t>$\frac{1}{2}$,求導,利用導數求得函數的單調性區間,即可求得x1+x2的取值范圍.

解答 解:當x≥1時,f(x)=lnx≥0,
∴f(x)+1≥1,
∴f[f(x)+1]=ln(f(x)+1),
當x<1,f(x)=1-$\frac{x}{2}$>$\frac{1}{2}$,
f(x)+1>$\frac{3}{2}$,
f[f(x)+1]=ln(f(x)+1),
綜上可知:F[f(x)+1]=ln(f(x)+1)+m=0,
則f(x)+1=e-m,f(x)=e-m-1,有兩個根x1,x2,(不妨設x1<x2),
當x≥1是,lnx2=e-m-1,當x<1時,1-$\frac{{x}_{1}}{2}$=e-m-1,
令t=e-m-1>$\frac{1}{2}$,則lnx2=t,x2=et,1-$\frac{{x}_{1}}{2}$=t,x1=2-2t,
∴x1+x2=et+2-2t,t>$\frac{1}{2}$,
設g(t)=et+2-2t,t>$\frac{1}{2}$,
求導g′(t)=et-2,令g′(t)=0,解得:t=ln2,
t∈($\frac{1}{2}$,ln2),g′(t)<0,函數g(t)單調遞減,
t∈(ln2,+∞),g′(t)>0,函數g(t)單調遞增,
∴當t=ln2時,g(t)取最小值,最小值為:g(t)min=g(ln2)=2+2-2ln2=4-2ln2,
∴g(x)的值域為[4-2ln2,+∞),
∴x1+x2取值范圍[4-2ln2,+∞),
故選:A.

點評 本題考查函數零點的判定,利用導數求函數的單調性及最值,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,則tan β=(  )
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若集合A={1,2},B={1,2,4},C={1,4,6},則(A∩B)∪C=(  )
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.設x,y滿足約束條件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,則z=-2x+y的最小值為-5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=|x|+|x-3|.
(1)解關于x的不等式f(x)-5≥x;
(2)設m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.函數f(x)的定義域為[-1,1],圖象如圖1所示;函數g(x)的定義域為[-2,2],圖象如圖2所示,方程f[g(x)]=0有m個實數根,方程g[f(x)]=0有n個實數根,則m+n=14

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$,則$\frac{x+y-3}{x-1}$的取值范圍是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現用分層抽樣的方法(按A類、B類分兩層)從該工廠的工人中抽取100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數),結果如表.
表1:A類工人生產能力的頻數分布表
生產能力分組[110,120)[120,130)[130,140)[140,150)
人數8x32
表2:B類工人生產能力的頻數分布表
生產能力分組[110,120)[120,130)[130,140)[140,150)
人數6y2718
(1)確定x,y的值;
(2)完成下面2×2列聯表,并回答能否在犯錯誤的概率不超過0.001的前提下認為工人的生產能力與工人的類別有關系?
生產能力分組
工人類別
[110,130)[130,150)總計
A類工人20525
B類工人304575
總計5050100
(3)工廠規定生產零件數在[130,140)的工人為優秀員工,在[140,150)的工人為模范員工,那么在樣本的A類工人中的優秀員工和模范員工中任意抽2人進行示范工作演示,試寫出所抽的模范員工的人數X的分布列和期望.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.下面各組函數中為相同函數的是(  )
A.$f(x)=\sqrt{{{({x-1})}^2}}\;,\;\;g(x)=x-1$B.$f(x)=\sqrt{{x^2}-1}\;,\;\;g(x)=\sqrt{x+1}•\sqrt{x-1}$
C.$f(x)=\sqrt{\frac{1-x}{x+2}}\;,\;\;g(x)=\frac{{\sqrt{1-x}}}{{\sqrt{x+2}}}$D.$f(x)={({\sqrt{x-1}})^2}\;,\;\;g(x)=\sqrt{{{({x-1})}^2}}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久亚洲精品裙底抄底 | 精品国产一二 | 91网站在线看 | 午夜精品在线观看 | 日韩色av | 国产一级大片 | 一区二区三区在线观看视频 | www.色网| 在线成人免费视频 | 黄色免费在线观看视频 | 色呦呦视频在线观看 | 热re99久久精品国产99热 | 日本高清视频一区二区三区 | 中文字幕一区二区三区在线视频 | 按摩高潮japanesevideo | 日韩精品不卡 | 国产精品久久久久久久久久 | 一本色道久久综合亚洲精品按摩 | 丁香婷婷久久久综合精品国产 | 色婷婷av久久久久久久 | 国产精品视频一区二区三区 | 国产亚洲精品综合一区91555 | 麻豆久久 | 97在线资源 | 亚洲丶国产丶欧美一区二区三区 | 中文字幕一二三区有限公司 | 久久国产成人 | 欧美性猛交xxxx免费看漫画 | 日本精品免费 | 精品久久久久久久久久久久包黑料 | av电影院在线观看 | 国产成人在线免费观看 | 超碰免费人人 | 99精品一区二区三区 | 色黄网站 | 国产精品色 | 欧美夜夜骑 | 日本亚洲精品一区二区三区 | 天天精品| 91精品国产综合久久蜜臀 | 亚洲日韩aⅴ在线视频 |