日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

17.已知數(shù)列{an}的前n項(xiàng)和為Sn.,且${S_n}={n^2}-2n$.
(Ⅰ)求{an}通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=n•{2^{{a_n}+1}}$,求數(shù)列{bn}前n項(xiàng)的和Tn

分析 (I)利用遞推關(guān)系即可得出.
(II)利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)∵${S_n}={n^2}-2n$
∴n=1時(shí),a1=-1;n≥2時(shí),${a_n}={S_n}-{S_{n-1}}={n^2}-2n-{(n-1)^2}+2(n-1)=2n-3$
所以an=2n-3…6分
(Ⅱ)由(Ⅰ)知${b_n}=n•{2^{{a_n}+1}}=n•{2^{(2n-3)+1}}=n•{4^{n-1}}$…8分
${T_n}=1×{4^0}+2×{4^1}+3×{4^2}+…+n×{4^{n-1}}$…①
$4{T_n}=1×{4^1}+2×{4^2}+3×{4^3}+…+(n-1)×{4^{n-1}}+n×{4^n}$…②
①-②得:$-3{T_n}={4^0}+{4^1}+{4^2}+…+{4^{n-1}}-n×{4^n}$=$\frac{{1-{4^n}}}{1-4}-n×{4^n}=(\frac{1}{3}-n){4^n}-\frac{1}{3}$…11分
Tn=$\frac{{1-{4^n}}}{1-4}-n×{4^n}=\frac{3n-1}{9}•{4^n}+\frac{1}{9}$…12分.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四面體ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,CE⊥BD于E
(Ⅰ) 求證:BD⊥AC;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$cosC=\frac{{2\sqrt{2}}}{3}$,bcosA+acosB=2,則△ABC的外接圓的面積為(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知$a=\sqrt{3},b=2$,A=60°,則c=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.過(guò)點(diǎn)(3,6)的直線被圓x2+y2=25截得的弦長(zhǎng)為8,這條直線的方程是(  )
A.3x-4y+15=0B.3x+4y-33=0C.3x-4y+15=0或x=3D.3x+4y-33=0或x=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=1+sinα\end{array}\right.$(α為參數(shù),α∈R),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線${C_2}:ρsin(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1和曲線C2相交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)F1,F(xiàn)2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦點(diǎn),P,Q為雙曲線C右支上的兩點(diǎn),若$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{{F}_{2}Q}$,且$\overrightarrow{{F}_{1}Q}$•$\overrightarrow{PQ}$=0,則該雙曲線的離心率是(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{17}}{3}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知P,Q是圓心在坐標(biāo)原點(diǎn)O的單位圓上的兩點(diǎn),且分別位于第一象限和第四象限,點(diǎn)P的橫坐標(biāo)為$\frac{4}{5}$,點(diǎn)Q的橫坐標(biāo)為$\frac{5}{13}$,則cos∠POQ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦點(diǎn)為F1(-$\sqrt{6}$,0),e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設(shè)R(x0,y0)是橢圓C上一動(dòng)點(diǎn),由原點(diǎn)O向圓(x-x02+(y-y02=4引兩條切線,分別交橢圓于點(diǎn)P,Q,若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1•k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問(wèn)OP2+OQ2是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 免费在线观看www | 国产理论在线观看 | av播播| 欧美综合久久 | 一区二区三区黄色 | 毛片毛片毛片 | 午夜视频在线播放 | 九九免费视频 | 欧美在线一区二区 | 欧美又大又硬又粗bbbbb | 亚洲精品xxx | 午夜av片 | 午夜久久久久久久 | 免费日韩视频 | 亚洲黄色一级 | 欧美日韩二区三区 | 九九精品免费视频 | 亚洲一级在线 | 麻豆亚洲一区 | 黄色小视频免费观看 | 中文字幕手机在线观看 | 精品国产一区二区三区久久久蜜月 | 免费黄色av | 中文字幕不卡在线观看 | 久操国产| 91插插插插| 久久怡红院 | 日韩黄色一级视频 | 精品欧美日韩 | 人人草av | 久久国产影院 | 艳妇臀荡乳欲伦交换h漫 | 成人一级黄色片 | 成人国产精品 | www.久久久久| 夜夜操网站 | 成人av播放 | 一区视频在线 | 国产h片在线观看 | 欧美一区二区三区在线视频 | 国产午夜精品视频 |