【題目】如圖,且
,
,
且
,
且
,
平面
,
.
(1)若為
的中點,
為
的中點,求證:
平面
;
(2)求二面角的正弦值.
科目:高中數學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結論的序號是________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創建知識的網絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統計結果如下表所示:
組別 | |||||||
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以認為,此次問卷調查的得分服從正態分布
,
近似為這1000人得分的平均值(同一組數據用該組區間的中點值作為代表),請利用正態分布的知識求
;
(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:
(i)得分不低于的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
(ii)每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列及數學期望.
附:①;
②若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為元,低于
箱按原價銷售,不低于
箱則有以下兩種優惠方案:①以
箱為基準,每多
箱送
箱;②通過雙方議價,買方能以優惠
成交的概率為
,以優惠
成交的概率為
.
甲、乙兩單位都要在該廠購買
箱這種零件,兩單位都選擇方案②,且各自達成的成交價格相互獨立,求甲單位優惠比例不低于乙單位優惠比例的概率;
某單位需要這種零件
箱,以購買總價的數學期望為決策依據,試問該單位選擇哪種優惠方案更劃算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)射線的極坐標方程為
,若射線
與曲線
的交點為
,與直線
的交點為
,求線段
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com