已知四棱錐的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(Ⅰ)證明:面面
;
(Ⅱ)求與
所成的角;
(Ⅲ)求面與面
所成二面角的大小。
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側棱AA1⊥平面ABC,△ABC為正三角形,且側面AA1C1C是邊長為2的正方形,E是的中點,F在棱CC1上。
(1)當CF時,求多面體ABCFA1的體積;
(2)當點F使得A1F+BF最小時,判斷直線AE與A1F是否垂直,并證明的結論。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知四棱錐平面
,底面
為直角梯形,
,且
,
.
(1)點在線段
上運動,且設
,問當
為何值時,
平面
,并證明你的結論;
(2)當面
,且
,
求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC—A1B1C1的側棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點,F是AB中點,AC = 1,BC = 2,AA1 = 4.
(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求證:BD⊥AA1;
若四邊形
是菱形,且
,求四棱柱
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com