【題目】在四棱錐P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動點.若CE∥平面PAB,則三棱錐C﹣ABE的體積為( )
A.
B.
C.
D.
【答案】D
【解析】解:以A為原點,AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標系, A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),
設E(a,0,c), ,則(a,0,c﹣3)=(6λ,0,﹣3λ),
解得a=6λ,c=3﹣3λ,∴E(6λ,0,3﹣3λ), =(6λ﹣2,﹣2,3﹣3λ),
平面ABP的法向量 =(1,0,0),
∵CE∥平面PAB,∴ =6λ﹣2=0,
解得 ,∴E(2,0,2),
∴E到平面ABC的距離d=2,
∴三棱錐C﹣ABE的體積:
VC﹣ABE=VE﹣ABC= =
=
.
故選:D.
以A為原點,AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出三棱錐C﹣ABE的體積.
科目:高中數學 來源: 題型:
【題目】某公司有4家直營店,
,
,
,現需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統計如下表所示.根據此表,該公司獲得最大總利潤的運送方式有
A. 種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列:
,
,…,
(
)中
(
)且對任意的
恒成立,則稱數列
為“
數列”.
(Ⅰ)若數列,
,
,
為“
數列”,寫出所有可能的
,
;
(Ⅱ)若“數列”
:
,
,…,
中,
,
,求
的最大值;
(Ⅲ)設為給定的偶數,對所有可能的“
數列”
:
,
,…,
,
記,其中
表示
,
,…,
這
個數中最大的數,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在古希臘畢達哥拉斯學派把1,3,6,10,15,21,28,…這些數叫做三角形數,因為這些數對應的點可以排成一個正三角形則第n個三角形數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線
與
的交點為
,四邊形
為梯形,
.
(Ⅰ)若,求證:
平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,
,
,求
與平面
所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,D是AC的中點,⊙O經過A,B,D三點,CB的延長線交⊙O于點E,過點E作⊙O的切線,交AC的延長線于點F.在滿足上述條件的情況下,當∠CAB的大小變化時,圖形也隨著改變,但在這個變化過程中,有些線段總保持著相等的關系.
(1)連接圖中已標明字母的某兩點,得到一條新線段與線段CE相等,并說明理由;
(2)若CF=CD,求sin F的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC﹣(2b﹣c)=0.
(1)求角A;
(2)若sinC=2sinB,且a= ,求邊b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量=(3,﹣4),
=(6,﹣3),
=(5﹣m,﹣3﹣m).
(Ⅰ)若點A,B,C不能構成三角形,求實數m應滿足的條件;
(Ⅱ)若△ABC為直角三角形,且C為直角,求實數m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com