已知頂點在原點,焦點在
軸上的拋物線過點
.
(1)求拋物線的標準方程;
(2)若拋物線與直線交于
、
兩點,求證:
.
科目:高中數學 來源: 題型:解答題
(13分) 已知橢圓C的中心在原點,離心率等于,它的一個短軸端點點恰好是拋物線
的焦點。
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側的動點,
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足=
,試問直線AB的斜率是否為定值,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,已知圓為圓上一動點,點
是線段
的垂直平分線與直線
的交點.
(1)求點的軌跡曲線
的方程;
(2)設點是曲線
上任意一點,寫出曲線
在點
處的切線
的方程;(不要求證明)
(3)直線過切點
與直線
垂直,點
關于直線
的對稱點為
,證明:直線
恒過一定點,并求定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線上有一點
,到焦點
的距離為
.
(Ⅰ)求及
的值.
(Ⅱ)如圖,設直線與拋物線交于兩點
,且
,過弦
的中點
作垂直于
軸的直線與拋物線交于點
,連接
.試判斷
的面積是否為定值?若是,求出定值;否則,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
矩形的中心在坐標原點,邊
與
軸平行,
=8,
=6.
分別是矩形四條邊的中點,
是線段
的四等分點,
是線段
的四等分點.設直線
與
,
與
,
與
的交點依次為
.
(1)以為長軸,以
為短軸的橢圓Q的方程;
(2)根據條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段的
(
等分點從左向右依次為
,線段
的
等分點從上向下依次為
,那么直線
與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com