【題目】已知點,橢圓
的長軸長是短軸長的2倍,
是橢圓
的右焦點,直線
的斜率為
,
為坐標原點.
(1)求橢圓的方程;
(2)設過點的動直線
與橢圓
相交于
兩點.當
的面積最大時,求直線
的方程.
【答案】(1) .(2)
或
.
【解析】試題分析:(1)由條件知a=2b,,又
,可得a,b,故得到E的方程;
(2)設出直線l的方程和點P的坐標,聯立直線l與橢圓方程,當判別式大于0時,根據韋達定理得根與系數的關系得到的長。根據點到直線距離公式代入
面積中,得到其關于k的表達式,根據換元法和基本不等式即可得到當面積取得最大值時k的值,即求得l的方程.
試題解析:(1) 設F(c,0),由條件知a=2b,得,又
,
所以a=2, ,故
的方程
.
(2)依題意當軸不合題意,故設直線l:y=kx-2,設
將y=kx-2代入,得
,
當,即
時,
,
從而,
又點O到直線PQ的距離,所以
OPQ的面積
,
設,則t>0,
,
當且僅當,
等號成立,且滿足
,
所以當OPQ的面積最大時,
的方程為:
或
.
科目:高中數學 來源: 題型:
【題目】已知坐標平面上點與兩個定點
,
的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點
的直線
被
所截得的線段的長為8,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖 1,在直角梯形中,
,且
.現以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證: 平面
;
(2)求證: 平面
;
(3)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在
軸上,離心率
,且橢圓
經過點
,過橢圓
的左焦點
且不與坐標軸垂直的直線交橢圓
于
,
兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與
軸交于點
,求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得=80,
=20,
=184,
=720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中, ,a=
-b
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項等比數列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數列.
(1)求數列{an}的通項公式;
(2)數列{nan}的前n項和為Tn,若對任意正整數n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com