已知函數f(x)=cos(2x+)+
-
+
sinx·cosx
⑴ 求函數f(x)的單調減區間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
第二問中,∵xÎ[0, ],∴2x-
Î[-
,
],
∴當2x-=-
,即x=0時,f(x)min=-
,
當2x-=
,
即x=
時,f(x)max=1
第三問中,(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
利用構造角得到sin2a=sin[(2a-)+
]
解:⑴ f(x)=cos2x-
sin2x-cos2x+
sin2x ………2分
=sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
……………………5分
∴ f(x)的減區間是[+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-
Î[-
,
], ……………………7分
∴當2x-=-
,即x=0時,f(x)min=-
, ……………………8分
當2x-=
,
即x=
時,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-)+
]
=sin(2a-)·cos
+cos(2a-
)·sin
………12分
=×
+
×
=
科目:高中數學 來源:2011-2012學年山東省濟寧市高三12月月考試題文科數學 題型:解答題
(本題滿分15分) 已知函數f (x)=x3+ax2+bx, a
, b
R.
(Ⅰ) 曲線C:y=f (x) 經過點P (1,2),且曲線C在點P處的切線平行于直線y=2x+1,求a,b的值;
(Ⅱ) 已知f (x)在區間 (1,2) 內存在兩個極值點,求證:0<a+b<2.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年浙江省杭州市高三上學期開學考試數學卷 題型:選擇題
已知函數f(x)=4x2-mx+5在區間[-2,+∞)上是增函數,則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數學試題 題型:填空題
已知函數f(x)=ax2+bx+c(a≠0),且f(x)=x無實根,下列命題中:
(1)方程f [f (x)]=x一定無實根;
(2)若a>0,則不等式f [f (x)]>x對一切實數x都成立;
(3)若a<0,則必存在實數x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數學 來源:遼寧省2012屆高二下學期期末考試數學(文) 題型:選擇題
已知函數f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對于任一實數x,f(x)與g(x)的值至少有一個為正數,則實數m的取值范圍是 ( )
A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com