已知拋物線的焦點
到準(zhǔn)線的距離為
.過點
作直線交拋物線
與
兩點(
在第一象限內(nèi)).
(1)若與焦點
重合,且
.求直線
的方程;
(2)設(shè)關(guān)于
軸的對稱點為
.直線
交
軸于
. 且
.求點
到直線
的距離的取值范圍.
(1) 或
;(2)
解析試題分析:(1) 首先求出拋物線 再與
聯(lián)立得到關(guān)于x的一元二次方程,最后利用焦半徑公式求出斜率即可.(2)先求出
,進(jìn)而轉(zhuǎn)換為
,再由l與C聯(lián)立得
,借助于根與系數(shù)的關(guān)系求出m的取值范圍,然后由點到直線的距離公式得到d的表達(dá)式,最后根據(jù)基本不等式求出范圍.
由題
(1)A與下重合,則 設(shè)
又由焦半徑公式有
可求 ∴
.
所求直線為:
或
(2)可求.故△BQM為等腰直角三角形,設(shè)
. 即
.
設(shè) ∴
從而, 即
, 又
.
∴.
點到直線
的距離為
∴
考點:拋物線的性質(zhì);焦半徑公式;根與系數(shù)的關(guān)系;點到直線的距離公式;基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的周長為12,頂點A,B的坐標(biāo)分別為(-2,0),(2,0),C為動點.
(1)求動點C的軌跡E的方程;
(2)過原點作兩條關(guān)于y軸對稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點,求四點所對應(yīng)的四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)有雙曲線,F1,F2是其兩個焦點,點M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°,△F1MF2的面積是多少?若∠F1MF2=120°,△F1MF2的面積又是多少?
(3)觀察以上計算結(jié)果,你能看出隨∠F1MF2的變化,△F1MF2的面積將怎樣變化嗎?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
.
(1)求橢圓的離心率;
(2)設(shè)為原點,若點
在橢圓
上,點
在直線
上,且
,試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的焦點在x軸上,左右頂點分別為
,上頂點為B,拋物線
分別以A,B為焦點,其頂點均為坐標(biāo)原點O,
與
相交于 直線
上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點
,求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓上的點M與橢圓右焦點
的連線
與x軸垂直,且OM(O是坐標(biāo)原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點,C是橢圓上的任一點,證明:;
(3)過且與AB垂直的直線交橢圓于P、Q,若
的面積是20
,求此時橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的圓心在坐標(biāo)原點
,且恰好與直線
相切,設(shè)點A為圓上一動點,
軸于點
,且動點
滿足
,設(shè)動點
的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com