日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知常數a為正實數,曲線Cn:y=
nx
在其上一點Pn(xn,yn)的切線ln總經過定點(-a,0)(n∈N*).
(1)求證:點列:P1,P2,…,Pn在同一直線上;
(2)求證:ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*).
分析:(1)欲求出切線方程,只須求出其斜率即可,故先利用導數求出在x=xn處的導函數值,再結合導數的幾何意義即可求出切線的斜率.Pn(a,
na
)總在直線x=a上,即P1,P2,,Pn在同一直線上,從而問題解決.
(2)由(1)可知yn=
an
,從而f(i)=
a
yi
=
1
i
=
1
i
,對
1
i
=
2
2
i
進行放縮
2
i
+
i-1
從而得出:
n
i=1
a
yi
=
n
i=1
1
i
n
i=1
2(
i
-
i-1
)
=2[(
1
-
0
)+(
2
-
1
)++(
n
-
n-1
)]=2
n
,最后設函數F(x)=
x
-ln(x+1),x∈[0,1],利用導數研究其單調性即可證得結論.
解答:證:(1)∵f(x)=
nx

∴f′(x)=
1
2
nx
•(nx)′=
1
2
n
x
.(1分)
Cn:y=
nx
在點Pn(xn,yn)處的切線ln的斜率kn=f′(xn)=
1
2
n
xn

∴ln的方程為y-yn=
1
2
n
xn
(x-xn).(2分)
∵ln經過點(-a,0),
∴yn=-
1
2
n
x n
(-a-xn)=
1
2
n
xn
(a+xn).
又∵Pn在曲線Cn上,∴yn=
nxn
=
1
2
n
xn
(a+xn),
∴xn=a,∴yn=
na
,∴Pn(a,
na
)總在直線x=a上,
即P1,P2,,Pn在同一直線x=a上.(4分)
(2)由(1)可知yn=
an
,∴f(i)=
a
yi
=
1
i
=
1
i
.(5分)
1
i
=
2
2
i
2
i
+
i-1
=2(
i
-
i-1
)(i=1,2,,n),
n
i=1
a
yi
=
n
i=1
1
i
n
i=1
2(
i
-
i-1
)

=2[(
1
-
0
)+(
2
-
1
)++(
n
-
n-1
)]=2
n
.(9分)
設函數F(x)=
x
-ln(x+1),x∈[0,1],有F(0)=0,
∴F′(x)=
1
2
x
-
1
x+1
=
x+1-2
x
2
x
(x+1)
=
(
x
-1)2
2
x
(x+1)
>0(x∈(0,1)),
∴F(x)在[0,1]上為增函數,
即當0<x<1時F(x)>F(0)=0,故當0<x<1時
x
>ln(x+1)恒成立.(11分)
取x=
1
i
(i=1,2,3,,n),f(i)=
1
i
>ln(1+
1
i
)=ln(i+1)-lni,
即f(1)=
1
1
1
>ln2,f(2)=
1
2
>ln(1+
1
2
)=ln3-ln2,,f(n)=
1
n
>ln(n+1)-lnn,∴
n
i=1
f(i)=
n
i=1
1
i
=
1
1
+
1
2
+
+
1
n
>ln2+(ln3-ln2)++[ln(n+1)-lnn]=ln(n+1)
綜上所述有ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*).(13分)
點評:本小題主要考查函數單調性的應用、利用導數研究曲線上某點切線方程、不等式的證明等基礎知識,考查運算求解能力、化歸與轉化思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(請注意求和符號:f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n為正整數且k≤n)
已知常數a為正實數,曲線Cn:y=
nx
在其上一點Pn(xnyn)處的切線Ln
總經過定點(-a,0)(n∈N*
(1)求證:點列:P1,P2,…,Pn在同一直線上
(2)求證:ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

已知常數a為正實數,在曲線Cny=
nx
上一點P(xn,yn)處的切線Ln總經過定點(-a,0),(n∈N*).求證點列:P1,P2,…,Pn在同一直線上.(關鍵是:Pi在同一直線上有三種情況:①xi相同;②yi相同;③
yi
xi
為常數)

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省十二校高三第一次聯考數學理卷 題型:解答題

(本小題滿分13分)

已知常數a為正實數,曲線Cny=在其上一點Pn(xnyn)的切線ln總經過定點(-a,0)(nN*).

(1)求證:點列:P1P2,…,Pn在同一直線上;

(2)求證: (nN*).

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省十二校高三第一次聯考數學試卷(理科)(解析版) 題型:解答題

已知常數a為正實數,曲線Cn:y=在其上一點Pn(xn,yn)的切線ln總經過定點(-a,0)(n∈N*).
(1)求證:點列:P1,P2,…,Pn在同一直線上;
(2)求證:(n∈N*).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久com| 久久久久久亚洲 | 欧美全黄| 成人精品久久 | 久久成人一区 | 亚洲国产精品久久久久 | 久久青| 亚洲三级在线免费观看 | 成人免费精品 | 国产三级在线观看 | 不卡久久 | 蜜桃色网 | 久久av一区二区三区 | 午夜视频在线观看网址 | 一区久久久 | 亚洲系列第一页 | 欧美日韩专区 | 亚洲青草 | 国产成人精品一区一区一区 | 国产精品美女久久 | 久操视频在线观看 | 日韩国产一区二区三区 | 日韩在线观看 | 99视频免费| 三级av | 天天干天天看天天操 | 久久中文字幕视频 | 久久久免费看 | 久久久国产精品入口麻豆 | 国产一区二区电影 | 亚洲第一夜 | 午夜影院免费 | 夜夜骑天天操 | 99精品久久久久久久免费看蜜月 | 免费在线中文字幕 | 三级视频在线 | 久久午夜精品福利一区二区 | 日韩三级免费观看 | 古风h啪肉1v1摄政王 | 国产精品日韩欧美一区二区三区 | 成人精品一区二区三区中文字幕 |