日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
函數f(x)=x3+ax2+bx+c,x∈[-2,2],表示的曲線過原點,且在x=±1處的切線的斜率均為-1,有以下命題:
①f(x)的解析式是f(x)=x3-4x,x∈[-2,2];
②f(x)的極值點有且只有1個;
③f(x)的最大值與最小值之和為0;
其中真命題的序號是
 
分析:首先利用導數的幾何意義及函數f(x)過原點,列方程組求出f(x)的解析式;然后根據奇函數的定義判斷函數f(x)的奇偶性,且由f′(x)的最小值求出k的最大值,則命題①④得出判斷;最后令f′(x)=0,求出f(x)的極值點,進而求得f(x)的單調區間與最值,則命題②③得出判斷.
解答:解:函數f(x)=x3+ax2+bx+c的圖象過原點,可得c=0;
又f′(x)=3x2+2ax+b,且f(x)在x=±1處的切線斜率均為-1,
則有
3+2a+b=-1
3-2a+b=-1
,解得a=0,b=-4.
所以f(x)=x3-4x,f′(x)=3x2-4.
①可見f(x)=x3-4x,因此①正確;
②令f′(x)=0,得x=±
2
3
3
.因此②不正確;
所以f(x)在[-
2
3
3
2
3
3
]內遞減,
且f(x)的極大值為f(-
2
3
3
)=
16
3
9
,極小值為f(
2
3
3
)=-
16
3
9
,兩端點處f(-2)=f(2)=0,
所以f(x)的最大值為M=
16
3
9
,最小值為m=-
16
3
9
,則M+m=0,因此③正確.
故答案為:①③.
點評:本題主要考查導數的幾何意義及利用導數研究函數單調性、最值的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數,在(0,1)上是增函數,函數f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•東城區一模)已知函數f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波模擬)已知函數f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數y=f(x)的單調遞減區間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數f(x)的單調區間與極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=x3+ax2-x+1的極值情況,4位同學有下列說法:甲:該函數必有2個極值;乙:該函數的極大值必大于1;丙:該函數的極小值必小于1;丁:方程f(x)=0一定有三個不等的實數根. 這四種說法中,正確的個數是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人国产精品视频 | 精品国产一二三区 | 国产一级特黄 | 久久都是精品 | 日韩免费小视频 | 美女黄色一级片 | 中文字幕在线免费观看 | 久久久天堂国产精品女人 | 精品亚洲一区二区三区 | 日韩中文字幕在线观看 | 中文字幕日韩视频 | 欧美精品一区在线观看 | 欧美午夜理伦三级在线观看 | 93久久精品日日躁夜夜躁欧美 | 国产在线中文字幕 | 亚洲天堂网址 | 最近日本中文字幕 | 国产操操操| 美日韩精品| 色综合天天综合网国产成人网 | 激情综合五月天 | 欧美中文字幕在线观看 | 国语对白做受69 | 精品国产欧美一区二区三区成人 | 国产精品免费av | 欧美精品xxx| 欧美精品日韩少妇 | 草草视频在线观看 | 免费国产精品视频 | 婷婷久久久 | 99热这里都是精品 | 欧美在线a| 麻豆成人91精品二区三区 | 日韩成人片| 日韩福利视频 | 欧美日韩小视频 | 欧美一级免费 | 女子spa高潮呻吟抽搐 | 99一区二区 | 午夜性色 | 午夜精品免费 |