【題目】已知函數f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求單調區間;
(2)求最值.
【答案】
(1)解:由于f′(x)=48﹣3x2,x∈[﹣3,5],
令f′(x)=48﹣3x2=0,解得x=4或x=﹣4(舍去),
當f′(x)>0,即﹣3≤x≤4時,函數f(x)單調遞增,
當f′(x)<0,即4<x≤5時,函數f(x)單調遞減,
故函數f(x)在[﹣3,4]上單調遞增,在(4,5]上單調遞減
(2)解:由(1)可知,f(x)max=f(4)=128,
∵f(﹣3)=﹣117,f(5)=﹣115,
∴f(x)min=﹣117
【解析】(1)根據導數和函數單調性的關系即可求出單調區間,(2)分別求出端點值和極大值,即可求出最值
【考點精析】根據題目的已知條件,利用利用導數研究函數的單調性和函數的最大(小)值與導數的相關知識可以得到問題的答案,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】已知正數數列{an}的前n項和為Sn , 點P(an , Sn)在函數f(x)= x2+
x上,已知b1=1,3bn﹣2bn﹣1=0(n≥2,n∈N*),
(1)求數列{an}的通項公式;
(2)若cn=anbn , 求數列{cn}的前n項和Tn;
(3)是否存在整數m,M,使得m<Tn<M對任意正整數n恒成立,且M﹣m=9,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足:a1=1,an+1= an+
(n∈N*).
(1)求最小的正實數M,使得對任意的n∈N* , 恒有0<an≤M.
(2)求證:對任意的n∈N* , 恒有 ≤an≤
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側棱的長都是底面邊長的 倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函數f(x)的極值;
(2)設函數k(x)=f(x)﹣h(x),若函數k(x)在[1,3]上恰有兩個不同零點求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解高三年級學生寒假期間的學習情況,某學校抽取了甲、乙兩班作為對象,調查這兩個班的學生在寒假期間平均每天學習的時間(單位:小時),統計結果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數相同,甲班學生平均每天學習時間在區間的有8人.
(I)求直方圖中的值及甲班學生平均每天學習時間在區間
的人數;
(II)從甲、乙兩個班平均每天學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知: =(2sinx,2cosx),
=(cosx,﹣cosx),f(x)=
.
(1)若 與
共線,且x∈(
,π),求x的值;
(2)求函數f(x)的周期;
(3)若對任意x∈[0, ]不等式m﹣2≤f(x)≤m+
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)圖象的相鄰兩條對稱軸之間的距離為
.
(Ⅰ)求ω的值及函數f(x)的單調遞減區間;
(Ⅱ)如圖,在銳角三角形ABC中有f(B)=1,若在線段BC上存在一點D使得AD=2,且AC=,CD=
-1,求三角形ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com