【題目】設點P在曲線 上,點Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
【答案】B
【解析】解:∵函數 與函數y=ln(2x)互為反函數,圖象關于y=x對稱,
函數 上的點
到直線y=x的距離為
,
設g(x)= (x>0),則
,
由 ≥0可得x≥ln2,
由 <0可得0<x<ln2,
∴函數g(x)在(0,ln2)單調遞減,在[ln2,+∞)單調遞增,
∴當x=ln2時,函數g(x)min=1﹣ln2, ,
由圖象關于y=x對稱得:|PQ|最小值為 .
故選B.
由于函數 與函數y=ln(2x)互為反函數,圖象關于y=x對稱,要求|PQ|的最小值,只要求出函數
上的點
到直線y=x的距離為
的最小值,
設g(x)= ,利用導數可求函數g(x)的單調性,進而可求g(x)的最小值,即可求.
科目:高中數學 來源: 題型:
【題目】已知是雙曲線
的左右焦點,以
為直徑的圓與雙曲線的一條漸近線交于點
,與雙曲線交于點
,且
均在第一象限,當直線
時,雙曲線的離心率為
,若函數
,則
()
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,滿足a1=3,a4=12,數列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數列.
(1)求數列{an}和{bn}的通項公式;
(2)求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,扇形,圓心角
的大小等于
,半徑為2,在半徑
上有一動點
,過點
作平行于
的直線交弧
于點
.
(1)若是半徑
的中點,求線段
的大;
(2)設,求
面積的最大值及此時
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,若
,有
,則稱函數
為定義在
上的非嚴格單增函數;若
,有
,則稱函數
為定義在
上的非嚴格單減函數.
.
(1)若函數為定義在
上的非嚴格單增函數,求實數
的取值范圍.
(2)若函數為定義在
上的非嚴格單減函數,試解不等式
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某特色餐館開通了美團外賣服務,在一周內的某特色菜外賣份數(份)與收入
(元)之間有如下的對應數據:
外賣份數 | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據此估計外賣份數為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數公式,
;
②參考數據: ,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某特色餐館開通了美團外賣服務,在一周內的某特色菜外賣份數(份)與收入
(元)之間有如下的對應數據:
外賣份數 | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據此估計外賣份數為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數公式,
;
②參考數據: ,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com