【題目】如下圖,在空間直角坐標系中,正四面體(各條棱均相等的三棱錐)
的頂點
分別在
軸,
軸,
軸上.
(Ⅰ)求證: 平面
;
(Ⅱ)求二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】某購物網站對在7座城市的線下體驗店的廣告費指出(萬元)和銷售額
(萬元)的數據統計如下表:
城市 | |||||||
廣告費支出 | |||||||
銷售額 |
(Ⅰ)若用線性回歸模型擬合與
關系,求
關于
的線性回歸方程;
(Ⅱ)若用對數函數回歸模型擬合與
的關系,可得回歸方程
,經計算對數函數回歸模型的相關系數約為
,請說明選擇哪個回歸模型更合適,并用此模型預測
城市的廣告費用支出
萬元時的銷售額.
參考數據: ,
,
,
,
,
.
參考公式: ,
.
相關系數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.8元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數據按照分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.
(ⅰ)現從全市居民中依次隨機抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過12噸的概率;
(ⅱ)試估計全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(元)與月份
的散點圖,其擬合的線性回歸方程是
.若李某2016年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,過點
且與
軸垂直的直線為
,
軸,交
于點
,直線
垂直平分
,交
于點
.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線
,直線
與曲線
交于不同兩點
,且
(
為常數),直線
與
平行,且與曲線
相切,切點為
,試問
的面積是否為定值.若為定值,求出
的面積;若不是定值,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某次有600人參加的數學測試,其成績的頻數分布表如圖所示,規定85分及其以上為優秀.
區間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數 | 36 | 114 | 244 | 156 | 50 |
(Ⅰ)現用分層抽樣的方法從這600人中抽取20人進行成績分析,求其中成績為優秀的學生人數;
(Ⅱ)在(Ⅰ)中抽取的20名學生中,要隨機選取2名學生參加活動,記“其中成績為優秀的人數”為,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標系中,直線
與直線
之間的陰影部分即為
,區域
中動點
到
的距離之積為1.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)動直線穿過區域
,分別交直線
于
兩點,若直線
與軌跡
有且只有一個公共點,求證:
的面積恒為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項等比數列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數列.
(1)求數列{an}的通項公式;
(2)數列{nan}的前n項和為Tn,若對任意正整數n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn,等比數列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立極坐標系,曲線
的參數方程為
(
為參數).
(1)寫出直線的普通方程與曲線
的直角坐標方程;
(2)設為曲線
上任意一點,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com