【題目】已知△ABC的三個內角A,B,C所對應的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內角B的大小;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.
【答案】
(1)解:∵bcosC+ c=a.
由正弦定理,可得sinBcosC sinC=sinA.
∵sinA=sin(B+C).
∴sinBcosC+ sinC=sinBcosC+sinCcosB
∵0<C<π,sinC≠0.
∴cosB= .
∵0<B<π,
∴B= .
(2)解:由△ABC的面積S= b2=
acsinB,
可得:b2=ac.
由余弦定理:cosB= =
,
得:a2+c2﹣2ac=0,即(a﹣c)2=0.
∴a=c.
故得△ABC是等腰三角形.
【解析】(1)利用正弦定理和三角形內角和定理化簡可得答案.(2)根據△ABC的面積S= b2=
acsinB建立關系,結合余弦定理,即可判斷.
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬,側棱
底面
,且
,點
是
的中點,連接
.
(1)證明:平面
,試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,請說明理由;
(2)記陽馬的體積為
,四面體
的體積為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】水培植物需要一種植物專用營養液,已知每投放(
且
)個單位的營養液,它在水中釋放的濃度
(克/升)隨著時間
(天)變化的函數關系式近似為
,其中
,若多次投放,則某一時刻水中的營養液濃度為每次投放的營養液在相應時刻所釋放的濃度之和,根據經驗,當水中營養液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次2個單位的營養液,則有效時間最多可能達到幾天?
(2)若先投放2個單位的營養液,3天后再投放個單位的營養液,要使接下來的2天中,營養液能夠持續有效,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|,a<0.
(Ⅰ)證明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交的作品的件數按5天一組分組統計,繪制了頻率分布直方圖,如圖所示,已知從左到右各長方形的高的比為2 : 3 : 4 : 6 : 4 :1,第三組的頻數為12.
(1)求本次活動參加評比的作品的件數;
(2)哪組上交的作品數量最多,有多少件?
(3)經過評比,第四組和第六組分別有10件、2件作品獲獎,問這兩組哪組獲獎率高?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com