【題目】如圖,在半徑為3的
圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中點
在圓弧上,點
在兩半徑上,現(xiàn)將此矩形鋁皮
卷成一個以
為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長
,圓柱的體積為
.
(1)寫出體積關(guān)于
的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時,才能使做出的圓柱形罐子體積
最大?最大體積是多少?(圓柱體積公式:
,
為圓柱的底面積,
為圓柱的高)
【答案】(1)其中
.(2)當(dāng)
為
時,做出的圓柱形罐子體積最大,最大體積是
.
【解析】試題分析:(1)連接OB,在Rt△OAB中,由AB=x,利用勾股定理可得,設(shè)圓柱底面半徑為r,則
=2πr,即可得出r.利用V=πr2x(其中0<x<30)即可得出.(2)利用導(dǎo)數(shù)V′,得出其單調(diào)性,即可得出結(jié)論.
試題解析:
⑴連結(jié),因為
,所以
,設(shè)圓柱底面半徑為
,則
,即
,所以
,其中
.
⑵由及
,得
,
列表如下:
極大值 |
所以當(dāng)時,
有極大值,也是最大值為
.
答:當(dāng)為
時,做出的圓柱形罐子體積最大,最大體積是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓O:
且與橢圓C:
相交于A,B兩點
(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長AB;
(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題
橢圓C1:
表示的是焦點在
軸上的橢圓,命題
對
,直線
與橢圓C2:
恒有公共點.
(1)若命題“”是假命題,命題“
”是真命題,求實數(shù)
的取值范圍.
(2)若真
假時,求橢圓C1、橢圓C2的上焦點之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
是平面,
,
是直線,給出下列命題:
①若,
,則
;
②若,
,
,
,則
;
③如果,
,
,
是異面直線,則
與
相交;
④若.
,且
,
,則
,且
其中正確確命題的序號是_____(把正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項和為
,且對任意正整數(shù)
,滿足
.
(1)求數(shù)列的通項公式;
(2)若,數(shù)列
的前
項和為
,是否存在正整數(shù)
,使
? 若存在,求出符合條件的所有
的值構(gòu)成的集合
;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com