日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
).記f(x)=
m
n

(1)求函數f(x)的最小正周期及單調遞增區間;
(2)求當x∈(0,π)時,函數f(x)的值域.
分析:(1)由向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
).f(x)=
m
n
根據平面向量的數量積公式,結合降冪公式(二倍角公式逆用)及輔助角公式,將函數的解析式化為正弦型函數的形式,進而根據正弦型函數的性質,即可求出函數的周期,求出函數f(x)的單調遞增區間;
(2)由(1)中函數的解析式,結合x的范圍,求出相位的范圍,直接求解函數的最值.
解答:解:(1)f(x)=
m
n

=
3
sin
x
4
cos
x
4
+cos2
x
4
   
=
3
2
sin
x
2
+
1
2
+
1
2
cos
x
2

=sin(
x
2
+
π
6
+
1
2

最小正周期為T=
1
2
=4π.
 由2kπ-
π
2
x
2
+
π
6
≤2kπ+
π
2
,(k∈Z).  
∴4kπ-
3
≤x≤4kπ+
3

函數遞增區間為[4kπ-
3
,4kπ+
3
](k∈Z).
(2)x∈(0,π),∴
x
2
+
π
6
∈(
π
6
3
),
1
2
<sin(
x
2
+
π
6
)≤1,
∴fmax∈(1,
3
2
].
點評:本題考查的知識點是平面向量的數量積運算,正弦型函數的圖象和性質,根據平面向量的數量積公式和輔助角公式,求出函數的解析式是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1).
(1)若
m
p
,求sinx•cosx的值;
(2)若f(x)=
m
n
,求函數f(x)在區間[0,
π
3
]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
P
=(2
3
,1).
(1)若
m
p
,求
m
n
的值;
(2)若f(x)=
m
n
,求f(x)最小正周期及f(x)在(0,
π
3
]的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1).
(1)若
m
p
,求
m
n
的值;    
(2)若角x∈(0,
π
3
]
,求函數f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
P
=(2
3
,1).
(1)若
m
p
,求
m
n
的值;
(2)若f(x)=
m
n
,求f(x)最小正周期及f(x)在(0,
π
3
]的值域.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1).
(1)若
m
p
,求sinx•cosx的值;
(2)若f(x)=
m
n
,求函數f(x)在區間[0,
π
3
]上的值域.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产99久久精品 | 久久综合九色综合欧美狠狠 | 青青草久久爱 | 日批免费在线观看 | 日韩视频精品在线 | 国产精品99 | 日韩另类在线 | 日韩视频在线免费观看 | 欧美一区二区三区视频在线观看 | 制服 丝袜 激情 欧洲 亚洲 | 色.com| 三级视频在线观看 | 九九亚洲 | 久久久精品观看 | 日本好好热视频 | www.4虎| 伊人爱爱网| 国产一区二 | 亚洲精品一区二三区不卡 | www.com欧美 | 国产高清一区 | 日韩精品一区二区三区 | 免费的黄色网址 | 卡通动漫第一页 | 青青草99| 日韩中文一区 | 日韩欧美在线观看一区 | 久久精品色欧美aⅴ一区二区 | 日韩草比 | 欧美精产国品一二三区 | 国产精品久久久久久久久久久久久久久久久 | 国产亚洲一区二区av | 97国产精品视频人人做人人爱 | 综合中文字幕 | 制服 丝袜 综合 日韩 欧美 | 日韩有码一区 | 精品久久一区二区三区 | 成人h精品动漫一区二区三区 | 亚洲黄色小视频 | 欧美日韩一区二区在线播放 | 精品99久久久久久 |