日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=loga(ax2-2x+4-2a)(a>0且a≠1).
(1)當a=2時,求函數f(x)的值域;
(2)若函數f(x)在(1,+∞)上為增函數,求a的取值范圍.
分析:(1)當a=2時,f(x)=log2(2x2-2x),設u=2x2-2x=2(x-
1
2
)2-
1
2
,由
u≥-
1
2
u>0
,能求出當a=2時,函數f(x)的值域.
(2)設u(x)=ax2-2x+4-2a,由函數f(x)在(1,+∞)上為增函數,知當a>1時,u(x)在(1,+∞)上為增函數且u(x)>0,由此能求出a的取值范圍.
解答:解:(1)當a=2時,
f(x)=log2(2x2-2x),
u=2x2-2x=2(x-
1
2
)2-
1
2

u≥-
1
2
u>0

解得u>0,
所以y=log2u∈R,函數f(x)的值域為R.
(2)設u(x)=ax2-2x+4-2a,
使函數f(x)在(1,+∞)上為增函數,
則a>1時u(x)在(1,+∞)上為增函數且u(x)>0,
a>1
1
a
≤1
u(1)=2-a≥0

解得1<a≤2.
所以a的取值范圍為(1,2].
點評:本題考查對數函數的值域和最值,解題時要認真審題,注意對數函數的定義域、值域和單調性的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久影院8一贰佰 | 天天操网 | 国产成人精品免费 | 一区二区三区精品 | 在线精品亚洲 | 91 视频网站 | 亚洲清色| 亚洲免费视频网站 | 99精品视频在线 | 成人亚洲视频 | 欧美在线观看在线观看 | 欧美日韩国产高清 | 久久一二区 | 精品国产依人香蕉在线精品 | 成人av免费 | 日韩久久久久久 | 青青久视频 | 中文字幕一区二区三区日韩精品 | 国产单男 | 久艹在线| 成人欧美一区二区三区在线播放 | 青娱乐在线播放 | 欧美极品欧美精品欧美视频 | av手机电影 | 亚洲综合视频 | 精品三区在线观看 | 中文字幕日韩一区二区 | 黄色av网站观看 | 日韩在线视频一区二区三区 | 激情一区二区三区 | 91高清视频 | 99精品国产视频 | 蜜桃视频在线观看www社区 | 97国产一区二区精品久久呦 | 91久久精品一区二区别 | 91成人区| 中字一区| 91精选国产 | 婷婷激情综合 | 国产一区2区| 国产精品一区二区三区四区 |