【題目】2015年12月10日,我國科學家屠呦呦教授由于在發現青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫學獎,以青蒿素類藥物為主的聯合療法已經成為世界衛生組織推薦的抗瘧疾標準療法,目前,國內青蒿人工種植發展迅速,調查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標有極強的相關性,現將這三項的指標分別記為,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標
的值評定人工種植的青蒿的長勢等級,若
,則長勢為一級;若
,則長勢為二極;若
,則長勢為三級,為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結果:
種植地編號 | |||||
種植地編號 | |||||
(1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數;
(2)從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標均為4個概率.
科目:高中數學 來源: 題型:
【題目】給定一個數列{an},在這個數列里,任取m(m≥3,m∈N*)項,并且不改變它們在數列{an}中的先后次序,得到的數列稱為數列{an}的一個m階子數列.已知數列{an}的通項公式為an= (n∈N*,a為常數),等差數列a2,a3,a6是數列{an}的一個3階子數列.
(1)求a的值;
(2)等差數列b1,b2,…,bm是{an}的一個m (m≥3,m∈N*) 階子數列,且b1= (k為常數,k∈N*,k≥2),求證:m≤k+1;
(3)等比數列c1,c2,…,cm是{an}的一個m (m≥3,m∈N*) 階子數列,
求證:c1+c2+…+cm≤2- .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“拋階磚”是國外游樂場的典型游戲之一.參與者只需將手上的“金幣”(設“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲,但很少有人得到獎品,請用所學的概率知識解釋這是為什么.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數相同,現從兩家公司各隨機抽取一名送餐員,并分別記錄其50天的送餐單數,得到如下頻數表:
甲公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 5 | 10 | 10 | 20 | 5 |
(1)現從甲公司記錄的50天中隨機抽取3天,求這3天送餐單數都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求
的分布列和數學期望;
②小王打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統計學知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學舉行一次“環保知識競賽”,全校學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數,滿分為分)作為樣本進行統計,請根據下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
(Ⅰ)寫出,
,
,
的值.
(Ⅱ)在選取的樣本中,從競賽成績是分以上(含
分)的同學中隨機抽取
名同學到廣場參加環保知識的志愿宣傳活動,求所抽取的
名同學來自同一組的概率.
(Ⅲ)在(Ⅱ)的條件下,設表示所抽取的
名同學中來自第
組的人數,求
的分布列及其數學期望.
組別 | 分組 | 頻數 | 頻率 |
第 | |||
第 | |||
第 | |||
第 | |||
第 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.
(Ⅰ)求證:平面
.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設點是線段
上一個動點,試確定點
的位置,使得
平面
,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省電視臺為了解該省衛視一檔成語類節目的收視情況,抽查東西兩部各5個城市,得到觀看該節目的人數(單位:千人)如下莖葉圖所示,其中一個數字被污損.
(I)求東部觀眾平均人數超過西部觀眾平均人數的概率.
(II)節目的播出極大激發了觀眾隨機統計了4位觀眾的周均學習成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數據分析,x,y呈線性相關關系,試求線性回歸方程,并預測年齡為60歲觀眾周均學習成語知識的時間.
參考數據:線性回歸方程中的最小二乘估計分別是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側面
底面
,
,
,
,
分別為
,
的中點,點
在線段
上.
(1)求證: 平面
;
(2)如果直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com