已知函數f(x)=x3-
x2+x+b,其中a,b∈R.
(1)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=5x-4,求函數f(x)的解析式.
(2)當a>0時,討論函數f(x)的單調性.
科目:高中數學 來源: 題型:解答題
設y=f(x)是二次函數,方程f(x)=0有兩個相等的實
根,且f′(x)=2x+2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知a,b∈R,函數f(x)=a+ln(x+1)的圖象與g(x)=x3-
x2+bx的圖象在交點(0,0)處有公共切線.
(1)證明:不等式f(x)≤g(x)對一切x∈(-1,+∞)恒成立;
(2)設-1<x1<x2,當x∈(x1,x2)時,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,(
>0,
,以點
為切點作函數
圖象的切線
,記函數
圖象與三條直線
所圍成的區域面積為
.
(1)求;
(2)求證:<
;
(3)設為數列
的前
項和,求證:
<
.來
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠生產某種產品,每日的成本C(單位:元)與日產量x(單位:噸)滿足函數關系式C=10000+20x,每日的銷售額R(單位:元)與日產量x滿足函數關系式R=
已知每日的利潤y=R-C,且當x=30時,y=-100.
(1)求a的值.
(2)求當日產量為多少噸時,每日的利潤可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x3+ax2+bx(a,b∈R).
(1)當a=1時,求函數f(x)的單調區間;
(2)若f(1)=,且函數f(x)在
上不存在極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(其中
).
(1)求的單調區間;
(2)若函數在區間
上為增函數,求
的取值范圍;
(3)設函數,當
時,若存在
,對任意的
,總有
成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com