【題目】已知是函數
的導函數,且
,
,則下列說法正確的是___________.
①;
②曲線在
處的切線斜率最小;
③函數在
存在極大值和極小值;
④在區間
上至少有一個零點.
【答案】②③④
【解析】
根據的導數
的正負性來判斷
的單調性,逐個選項進行判斷.
因為,所以
,那么
,即
,又因為
,所以
,
.①中
不能從條件判斷出來,比如
和
均符合題中函數,但是
可正可負.,所以①錯誤。②曲線
的曲線切線斜率最小即
的函數值最小,又由
知道二次函數
的開口朝上,所以
在對稱軸即
的值最小,所以②正確.
③函數在
是否存在極大值和極小值取決于
的正負性,而
是開口朝上的二次函數,又因為
,所以
存在
兩個零點,并且在
上
,在
上
,在
上
.可知
在
取得極大值,在
取得極小值,所以③正確。④
,而
,
,所以
,那么
之間至少有一個數為正,而
因為
的圖像是一條連續的曲線,所以若
,
可得在
在
至少有一個零點,若
,
可得在
在
至少有一個零點,所以
在區間
上至少有一個零點. ④正確。所以此題①錯誤,②③④正確。
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.若為真命題,則
,
均為假命題;
B.命題“若,則
”的逆否命題為真命題;
C.等比數列的前
項和為
,若“
”則“
”的否命題為真命題;
D.“平面向量與
的夾角為鈍角”的充要條件是“
”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且曲線
與
恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點
,
滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,設橢圓
的左焦點為
,短軸的兩個端點分別為
,且
,點
在
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓
和圓
分別相切于
,
兩點,當
面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國古畫,現收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結實累累,小孩群來攀扯,枝椏不停晃動,粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據該圖編排一個舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個動作,四人每人模仿一個動作.若他們采用抽簽的方式來決定誰模仿哪個動作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這100件產品質量指標值的樣本平均數和樣本方差
(同一組的數據用該組區間的中點值作為代表);
(2)由直方圖可以認為,這種產品的質量指標值服從正態分布
,其中
近似為樣本平均數
,
近似為樣本方差
。
(i)若某用戶從該企業購買了10件這種產品,記表示這10件產品中質量指標值位于(187.4,225.2)的產品件數,求
;
(ii)一天內抽取的產品中,若出現了質量指標值在之外的產品,就認為這一天的生產過程中可能出現了異常情況,需對當天的生產過程進行檢查下。下面的莖葉圖是檢驗員在一天內抽取的15個產品的質量指標值,根據近似值判斷是否需要對當天的生產過程進行檢查。
附:,
,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com