已知f(x)=x3+2xf′(1),則曲線y=f(x)在點(1,f(1))處的切線方程為 .
【答案】分析:求出f′(x),由題意可知曲線在點(1,f(1))處的切線方程的斜率等于f′(1),所以把x=1代入到f′(x)中即可求出f′(1)的值,得到切線的斜率,然后把x=1和f′(1)的值代入到f(x)中求出切點的縱坐標,根據切點坐標和斜率直線切線的方程即可.
解答:解:f′(x)=3x2+2f′(1)
由題意可知,曲線在(1,f(1))處切線方程的斜率k=f′(1),
則f′(1)=3+2f′(1),解得f′(1)=-3,
則f(1)=1+2×(-3)=-5,所以切點(1,-5)
所以切線方程為:y+5=-3(x-1)化簡得3x+y+2=0
故答案為:3x+y+2=0
點評:此題考查學生會利用導數求過曲線上某點切線方程的斜率,會根據一點和斜率寫出直線的方程,是一道中檔題.