【題目】“水是生命之源”,但是據科學界統計可用淡水資源僅占地球儲水總量的,全世界近
人口受到水荒的威脅.某市為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸):一位居民的月用水量不超過
的部分按平價收費,超出
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照
分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數,并說明理由;
(3)若該市政府希望使的居民每月的用水不按議價收費,估計
的值,并說明理由.
【答案】(1);(2)
萬;(3)
噸.
【解析】
(1)通過頻率之和為,構造方程求得結果;(2)計算出樣本中不低于
噸人數占比,從而求得全市的人數;(3)由頻率分布直方圖頻率分布可知
,然后根據平均分布列方程求得相應結果.
(1)由概率統計相關知識,可知各組頻率之和的值為
即頻率分布直方圖各小矩形面積之和為
解得:
(2)由圖可知,不低于噸人數所占百分比為
全市月均用水量不低于
噸的人數為:
(萬)
(3)由(2)可知,月均用水量小于噸的居民人數所占百分比為:
即的居民月均用水量小于
噸,同理,
的居民月均用水量小于
噸
故
假設月均用水量平均分布,則(噸)
注:本次估計默認組間是平均分布,與實際可能會產生一定誤差
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為
,
分別是
的中點,點
在棱
上, (
).
(Ⅰ)三棱錐的體積分別為
,當
為何值時,
最大?最大值為多少?
(Ⅱ)若平面
,證明:平面
平面
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖①是一棟新農村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設∠FMH
.
(1)求屋頂面積S關于的函數關系式;
(2)已知上部屋頂造價與屋頂面積成正比,比例系數為k(k為正的常數),下部主體造價與其 高度成正比,比例系數為16 k.現欲造一棟上、下總高度為6 m的別墅,試問:當為何值時,總造價最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第18屆國際籃聯籃球世界杯將于2019年8月31日至9月15日在中國北京、廣州等八座城市舉行.屆時,甲、乙、丙、丁四名籃球世界杯志愿者將隨機分到、
、
三個不同的崗位服務,每個崗位至少有一名志愿者.
(1)求甲、乙兩人不在同一個崗位服務的概率;
(2)設隨機變量為這四名志愿者中參加
崗位服務的人數,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】研究變量,
得到一組樣本數據,進行回歸分析,有以下結論
①殘差平方和越小的模型,擬合的效果越好;
②用相關指數來刻畫回歸效果,
越小說明擬合效果越好;
③線性回歸方程對應的直線至少經過其樣本數據點中的一個點;
④若變量和
之間的相關系數為
,則變量
和
之間的負相關很強.
以上正確說法的個數是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
(1) 求出,
,
并猜測
的表達式;
(2) 求證:+
+
+…+
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,用總長為定值l的籬笆圍成長方形的場地,以墻為一邊,并用平行于一邊的籬笆隔開.
(1)設場地面積為y,垂直于墻的邊長為x,試用解析式將y表示成x的函數,并確定這個函數的定義域;
(2)怎樣圍才能使得場地的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸的正半軸為極軸,以相同的長度單位建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求直線的極坐標方程和曲線
的直角坐標方程;
(Ⅱ)已知,直線
與曲線
交于
,
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數)以坐標原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線的普通方程和極坐標方程;
(2)直線的極坐標方程為
,若
與
的公共點為
,且
是曲線
的中心,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com