日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
16.經過拋物線y=4x2的焦點作直線l交該拋物線于A(x1,y1),B(x2,y2)兩點,若y1+y2=2,則線段AB的長等于$\frac{17}{8}$.

分析 先根據拋物線方程求出焦點坐標,進而可設出直線方程,然后聯立直線與拋物線消去y得到關于x的一元二次方程,根據韋達定理得到兩根之和與兩根之積,再由兩點間的距離公式表示出|AB|,將得到的兩根之和與兩根之積即可得到答案.

解答 解:y=4x2的焦點為(0,$\frac{1}{16}$),設過焦點(0,$\frac{1}{16}$)的直線為y=kx+$\frac{1}{16}$,
則令kx+$\frac{1}{16}$=4x2,即64x2-16kx-1=0,由韋達定理得x1+x2=$\frac{1}{4}$k,x1x2=-$\frac{1}{64}$
y1=kx1+$\frac{1}{16}$,y2=kx2+$\frac{1}{16}$,
所以y1+y2=k(x1+x2)+$\frac{1}{8}$=$\frac{1}{4}$k2+$\frac{1}{8}$=2,所以k2=$\frac{15}{2}$,
所以|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{15}{2}}$•$\sqrt{\frac{1}{16}•\frac{15}{2}+4•\frac{1}{64}}$=$\frac{17}{8}$.
故答案為:$\frac{17}{8}$.

點評 本題主要考查拋物線的基本性質和兩點間的距離公式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

2.已知p:x=1,q:x3-2x+1=0,則p是q的充分不必要條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選出適當的一種填空).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.對于函數f(x),若在定義域內存在實數x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數”.
(I) 已知二次函數f(x)=ax2+2bx-3a(a,b∈R),試判斷f(x)是否為“局部奇函數”?并說明理由;
(II) 設f(x)=2x+m-1是定義在[-1,2]上的“局部奇函數”,求實數m的取值范圍;
(III) 設f(x)=4x-m•2x+1+m2-3,若f(x)不是定義域R上的“局部奇函數”,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow{b}$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,則tan(α+β)等于(  )
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知在直角坐標系中,曲線的C參數方程為$\left\{\begin{array}{l}{x=1+2cosφ}\\{y=1+2sinφ}\end{array}\right.$(φ為參數),現以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=$\frac{4}{cosθ-sinθ}$.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)在曲線C上是否存在一點P,使點P到直線l的距離最小?若存在,求出距離的最小值及點P的直角坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=kx3-3kx2+b在區間[-2,2]上的最大值為3,最小值為-17,求k,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,在四棱錐 P-ABCD中,底面是邊長為a的正方形,側棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知實數a>0,且函數$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$為奇函數.判斷函數f(x)的單調性,并用單調性的定義證明.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.將函數f(x)=$\sqrt{3}$sin2x-cos2x的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位長度后得到函數y=g(x)的圖象,若g(x)≤|g($\frac{π}{6}$)|對x∈R恒成立,則函數y=g(x)的單調遞減區間是(  )
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩国产免费观看 | 国产欧美在线观看 | 亚洲成人二区 | 国产精品免费在线 | 欧美日韩精品一区二区 | 资源av | 日韩av一二三四区 | 成人免费观看49www在线观看 | 一区二区三区四区在线 | 视频一区二区在线 | 亚洲自拍电影网 | 国产精品㊣新片速递bt | av日韩在线看 | 午夜免费一区二区播放 | 岛国视频 | 97成人精品视频在线观看 | 国产欧美精品一区二区三区四区 | 日本少妇毛茸茸高清 | 男女看片黄全部免费 | 亚洲视频在线看 | 国产精品久久久久国产a级 一级免费黄色 | 日韩欧美二区 | 成人在线免费观看 | 99精品在线 | 日韩福利视频网 | 日本黄色大片免费看 | 午夜精品久久久久久久99樱桃 | 国产精品福利久久 | 97精品超碰一区二区三区 | 欧美第一页 | 欧美精品二区三区四区免费看视频 | 久久久久久一区二区 | 成人免费一区二区三区视频网站 | 蜜桃一区二区三区 | 成人精品久久久 | 国产精品成av人在线视午夜片 | 日韩视频免费在线 | 日韩毛片免费视频一级特黄 | 国产极品一区二区三区 | 蜜桃精品在线观看 | 免费成人高清在线视频 |