圖1-4-8
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2011-2012學年山東省高三第五次質量檢測文科數學試卷(解析版) 題型:解答題
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點,且.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
【解析】本試題主要是考查了立體幾何匯總線面的位置關系的運用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結合線面垂直的判定定理和性質定理,可以得證。
解:(Ⅰ)設AB1 的中點為P,連結NP、MP ………………1分
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設:AC=2a,則
…………………………8分
同理,…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
………………………………10分
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省肇慶市高三數學復習必修2模塊測試試卷D卷 題型:選擇題
如圖8-25,在三棱柱的側棱A1A和B1B上各有一動點P,Q,且滿足A1P=BQ,過P、Q、C三點的截面把棱柱分成兩部分,則其體積之比為( )
A.3∶1 B.2∶1 C.4∶1 D.∶1
查看答案和解析>>
科目:高中數學 來源:2008年上海市奉賢區高考數學二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com