天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,
得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
|
優秀 |
非優秀 |
合計 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合計 |
|
|
110 |
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
|
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(1)
|
優秀 |
非優秀 |
合計 |
甲班 |
10 |
50 |
60 |
乙班 |
20 |
30 |
50 |
合計 |
30 |
80 |
110 |
(2)計算得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認為“成績與班級有關系”
(3)抽到9號或10號的概率為.
【解析】
試題分析:
思路分析:此類問題(1)(2)直接套用公式,經過計算“卡方”,與數表對比,作出結論。(3)是典型的古典概型概率的計算問題,確定兩個“事件”數,確定其比值。
解:(1) 4分
|
優秀 |
非優秀 |
合計 |
甲班 |
10 |
50 |
60 |
乙班 |
20 |
30 |
50 |
合計 |
30 |
80 |
110 |
(2)根據列聯表中的數據,得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能認為“成績與班級有關系” 8分
(3)設“抽到9或10號”為事件A,先后兩次拋擲一枚均勻的骰子,出現的點數為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個.所以P(A)= ,即抽到9號或10號的概率為
. 12分
考點:“卡方檢驗”,古典概型概率的計算。
點評:中檔題,獨立性檢驗問題,主要是通過計算“卡方”,對比數表,得出結論。古典概型概率的計算中,常用“樹圖法”或“坐標法”確定事件數,以防重復或遺漏。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com