在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA=PD,底面ABCD是菱形,∠A=60°,E是AD的中點,F是PC的中點.
(Ⅰ)求證:BE⊥平面PAD;
(Ⅱ)求證:EF∥平面PAB;
(Ⅰ)證明:∵AB=2,∴AE=1,
∴BE2=AB2+AE2-2AB·AE·cos ∠A=4+1-2×2×1×cos 60°=3,
∴AE2+BE2=1+3=4=AB2,∴BE⊥AE.
又平面PAD⊥平面ABCD,交線為AD,
∴BE⊥平面PAD.
(Ⅱ)證明:取BC的中點G,連接GE,GF.則GF∥PB,EG∥AB,
又GF∩EG=G,∴平面EFG∥平面PAB,∴EF∥平面PAB.
(Ⅲ)解:∵AD∥BC,∴AD∥平面PBC.
∴點A到平面PBC的距離等于點E到平面PBC的距離.
因為平面PBE⊥平面PBC.
又平面PBE∩平面PBC=PB,
作EO⊥PB于O,則EO是E到平面PBC的距離,
且PE==1,BE=
,∴PB=2.
由EO·PB=
PE·EB,
∴EO==
.
解析
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com