日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知函f(x)=ex-x (e為自然對數的底數).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|數學公式}且M∩P≠∅求實數a的取值范圍;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差數列{an}和首項為f(I)公比大于0的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數列{an}、{bn}的通項公式.若不存在,請說明理由.

解:(1)∵函數f(x)=ex-x,∴f′(x)=ex-1;由f′(x)=0,得x=0,當x>0時,f′(x)>0,函數f(x)在(0,+∞)上單調遞增;當x<0時,f′(x)<0,函數f(x)在(-∞,0)上單調遞減;∴函數f(x)的最小值為f(0)=1.
(2)∵M∩P≠∅,∴f(x)>ax在區間[,1]有解,由f(x)>ax,得ex-x>ax,即a<在[,2]上有解;
令g(x)=,x∈[,2],則g′(x)=,∴g(x)在[,1]上單調遞減,在[1,2]上單調遞增;
又g()=2-1,g(2)=-1,且g(2)>g(),∴g(x)的最大值為g(2)=-1,∴a<-1.
(3)設存在公差為d的等差數列{an}和公比為q(q>0),首項為f(1)的等比數列{bn},
使a1+a2+…+an+b1+b2+…+bn=Sn
;且b1=f(1)=e-1,
;∴a1=-,又n≥2時,an+bn=sn-sn-1=en-1(e-1)-n+;
故n=2,3時,有
②-①×2得,q2-2q=e2-2e,解得q=e,或q=2-e(舍),故q=e,d=-1;
此時an=-+(n-1)(-1)=-n,;
∴存在滿足條件的數列{an},{bn}滿足題意.
分析:(1)∵函數f(x)=ex-x,對f(x)求導,令f′(x)=0,得x=0,從而求得函數f(x)的最小值;
(2)由M={x|}且M∩P≠∅,得f(x)>ax在區間[,1]有解,即ex-x>ax,可得a<在[,2]上有解,故令g(x)=,x∈[,2],求導得,g′(x)=,利用導數可求得g(x)在[,2]上的最大值為
g(2),從而得a的取值范圍;
(3)設存在公差為d的等差數列{an}和公比為q(q>0),首項為f(1)的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn,則由sn=∫ONf(x)dx,得sn,由b1=f(1)=e-1,且a1+b1=s1,可得a1,又n≥2時,an+bn=sn-sn-1=en-1(e-1)-n+
故n=2,3時,有可解得q=e,從而得d=-1,所以求得an,bn;得到滿足條件的數列{an},{bn}.
點評:本題綜合考查了利用導數求函數的最值問題,集合關系,定積分求值問題,函數與數列的綜合應用問題,屬于較難的問題;解題時需要認真分析,細心解答,避免出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函f(x)=ex-x (e為自然對數的底數).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|
12
≤x≤2
}且M∩P≠∅求實數a的取值范圍;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差數列{an}和首項為f(I)公比大于0的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數列{an}、{bn}的通項公式.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年福建省泉州市安溪八中高考數學模擬試卷(理科)(解析版) 題型:解答題

已知函f(x)=ex-x (e為自然對數的底數).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|}且M∩P≠∅求實數a的取值范圍;
(3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差數列{an}和首項為f(I)公比大于0的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數列{an}、{bn}的通項公式.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江西省重點中學聯盟高三第一次聯考數學試卷(理科)(解析版) 題型:解答題

已知函f(x)=ex-x (e為自然對數的底數).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|}且M∩P≠∅求實數a的取值范圍;
(3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差數列{an}和首項為f(I)公比大于0的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數列{an}、{bn}的通項公式.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年廣東省中山一中高三第八次統測數學試卷(理科)(解析版) 題型:解答題

已知函f(x)=ex-x (e為自然對數的底數).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|}且M∩P≠∅求實數a的取值范圍;
(3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差數列{an}和首項為f(I)公比大于0的等比數列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數列{an}、{bn}的通項公式.若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一区二区免费 | 黄色免费看 | 国产精品电影久久 | 亚洲精品v日韩精品 | 精品自拍视频 | 日韩成人在线播放 | 极品少妇xxxxⅹ另类 | 黄色在线免费看 | 狠狠狠色丁香婷婷综合久久五月 | 范冰冰一级做a爰片久久毛片 | 欧美在线a | 日本免费小视频 | 欧美日韩中文字幕在线 | 亚洲色图一区二区三区 | 草草草久久久 | 欲色av| 日本一区二区三区四区视频 | 草视频在线 | 夜夜撸av| 日日做夜夜操 | 欧美四区 | 999在线视频免费观看 | 国产精品8888 | 欧美日韩成人在线观看 | 色老头在线观看 | 欧美在线网站 | 免费欧美黄色片 | 天天操,夜夜操 | 国产精品二区一区二区aⅴ污介绍 | 免费看性生交大片 | 国产一区二区三区在线 | 久久国产麻豆 | 国产精品一区二区三 | 欧美精品h | 国产又粗又长又硬又猛电影 | 国产精品12 | 中文字幕在线电影 | 一区二区日韩 | 国产黄色免费 | 欧美日韩免费一区二区三区 | 国产二区视频 |