日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
a•2x+a-22x+1
為奇函數.
(Ⅰ)求實數a的值;
(Ⅱ)利用函數單調性的定義判斷f(x)在其定義域上的單調性.
分析:(I )由函數為奇函數可得f(0)=0,代入可求a的值
(II)利用函數單調性的定義,任設x1<x2,則需要判斷f(x1)-f(x2)=1-
2
2x1+1
-1+
2
2x2+1
的符號,從而可判斷函數的單調性
解答:解:(I)由題意可得函數的定義域為R
f(x)=
a•2x+a-2
2x+1
為奇函數 
∴f(-x)=-f(x)對任意的x都成立
∴f(0)=-f(0)即f(0)=0
∴a•20+a-2=0
∴a=1
(II)由(I)可得f(x)=
2x-1
2x+1
=1-
2
2x+1

設x1<x2
則f(x1)-f(x2)=1-
2
2x1+1
-1+
2
2x2+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵x1<x2
2x1-2x2<02x1+1>0,2x2+1>0
∴f(x1)-f(x2)<0
即f(x1)<f(x2
∴函數f(x)得f(x)=
2x-1
2x+1
在R上單調遞增
點評:本題考察了函數奇偶性的性質以及函數單調性的證明方法定義法,解題的關鍵是理解奇函數的定義及單調性的證明方法,本題的重點是單調性的證明,其中判斷符號是難點
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的圖象經過點(
π
4
,2)

(1)求實數m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a-
22x+1

(1)求證:不論a為何實數f(x)總為增函數;
(2)確定a的值,使f(x)為奇函數;
(3)若不等式f(x)+a>0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若數列{an}是單調遞減數列,則實數a的取值范圍為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).設函數f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函數f(x)在區間[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,設函數f(x)=
a
b
+|
b
|2+
3
2

(1)求函數f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 777xacom| 日本高清一区 | 久久久久成人精品 | 久久国产在线视频 | 亚洲一区二区三区日韩 | 亚洲精品乱码久久久久久国产主播 | 91在线精品一区二区 | 欧美日韩不卡合集视频 | 日本黄色一级片视频 | 黄站在线观看 | 精品视频一区二区三区 | 久久蜜臀 | 久久99国产精品久久99果冻传媒 | 日韩成人一级片 | 日韩一区二区精品视频 | 国产一区二区精品在线观看 | 久久大陆 | 冲田杏梨毛片 | 玖玖操| 国产91九色一区二区三区 | 日本高清视频网站www | 亚洲第一天堂 | 久久亚洲视频 | 久久精品电影网 | 久久免费高清视频 | hd国产人妖ts另类视频 | 欧美精品一区二区三区在线播放 | 午夜影院免费版 | 羞羞视频在线播放 | 日韩福利| 亚洲第一成年免费网站 | 精品无人乱码区1区2区3区 | 日本免费成人 | 亚洲欧美日韩另类精品一区二区三区 | 精品国产一区二区三区久久久久久 | 久干网| 美国av一区二区三区 | 午夜免费视频 | www.色在线| 亚洲综合色视频在线观看 | 精品国产一区二区三区性色av |