日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
若f(x+1)的定義域為〔-2,3〕,則f(2x-1)的定義域為( 。
分析:由函數f(x+1)的定義域是[-2,3],求出函數f(x)的定義域,再由2x-1在函數f(x)的定義域內求解x的取值集合得到函數y=f(2x-1)的定義域.
解答:解:由函數f(x+1)的定義域是[-2,3],
得-1≤x+1≤4.
即函數f(x)的定義域是[-1,4],
再由-1≤2x-1≤4,得:0≤x≤
5
2

∴函數y=f(2x-1)的定義域是[0,
5
2
]

故選:A.
點評:本題考查了復合函數定義域的求法,給出函數f[g(x)]的定義域[a,b],求函數f(x)的定義域,就是求x∈[a,b]內的g(x)的值域;給出函數f(x)的定義域為[a,b],求f[g(x)]的定義域,只需由a≤g(x)≤b,求解x的取值集合即可,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

12、已知f(x)是定義在R上的函數,對任意x∈R都有f(x+4)=f(x)+2f(2),若函數f(x-1)的圖象關于直線x=1對稱,且,,則f(2011)等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x),若對任意不等實數x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)=ax4+bx3+cx2+dx+e,當x=-1時,f(x)取得極大值
2
3
,并且函數y=f(x-1)的圖象關于點(1,0)對稱.
(Ⅰ)求f(x)的表達式;
(Ⅱ)試在函數f(x)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標都在區間[-
2
,
2
]
上;
(Ⅲ)若x=
2t-1
2t
y=
2
(1-3t)
3t
(t∈R+),求證:|f(x)-f(y)|<
4
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在R上,對任意實數x有f(x+4)=-f(x)+2
2
,若函數y=f(x-1)的圖象關于直線x=1對稱,f(-1)=2,則f(2013)=(  )
A、-2+2
2
B、2+2
2
C、2-2
2
D、2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 夜夜夜久久 | 日韩精品一区二区三区四区 | 国产激情在线观看视频 | 亚洲欧洲精品一区二区三区 | 精品国产一区二区三区国产馆杂枝 | 美日韩精品| 欧美激情精品久久久久 | 成人国产 | 中文字幕一区二区三区日韩精品 | 日韩一区二区中文字幕 | 国产精品亚洲综合 | 中文字幕在线资源 | 日韩av免费看 | 亚洲区在线 | 欧美日一区二区 | 亚州成人| 欧美日韩中文字幕 | 久久精品色欧美aⅴ一区二区 | 免费av一区 | 狠狠躁夜夜躁人人爽天天高潮 | 国产精品久久久久一区二区三区 | 在线免费视频一区 | 亚洲第一国产视频 | 狠狠躁夜夜躁人人爽天天高潮 | 国内精品久久久久 | 国产午夜精品一区二区三区视频 | 欧美成人精品h版在线观看 日韩激情影院 | 欧美日韩免费看 | 久久国产成人午夜av影院宅 | 亚洲国产天堂久久综合 | 亚洲精品自在在线观看 | 欧美自拍视频 | 精品www| 日本a视频 | 999精品一区 | 一区二区在线免费观看 | 欧美a级网站| 一级黄网 | 我爱操| 黄色大片网站在线观看 | 久久成 |