日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x(x+1)(x+2)…(x+99),則函數f(x)在x=0處的導數值為(  )
分析:利用積的導數公式進行求解即可.
解答:解:∵f(x)=x(x+1)(x+2)…(x+99)=x[(x+1)(x+2)…(x+99)],
∴f'(x)=x'[(x+1)(x+2)…(x+99)]+x[(x+1)(x+2)…(x+99)]'
=[(x+1)(x+2)…(x+99)]+x[(x+1)(x+2)…(x+99)]',
∴f'(0)=(1×2×…•×99)+0×[(x+1)(x+2)…(x+99)]'=99!.
故選:B.
點評:本題主要考查導數的基本運算,將函數分解為兩部分,利用積的導數公式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕av在线 | 欲望岛av| 日日干夜夜爽 | 日韩av在线看| 精品一区二区三区在线观看 | 欧美成人极品 | 日韩精品一区二区在线 | 免费成人在线观看 | 黄色特级毛片 | 久久久久成人网 | 手机福利视频 | 日本在线观看一区 | 成人免费毛片嘿嘿连载视频 | 亚洲免费视频网站 | 91精品久久久久久久久 | 欧美综合在线观看 | 欧美九九九 | 国产精品久久久久久久久久久久久 | 日本在线天堂 | 日本在线视频观看 | 成人网在线观看 | 国产视频福利 | 操碰97| heyzo在线观看| 人与拘一级a毛片 | 日韩一级片 | 日韩在线不卡视频 | 老女人毛片 | 中文字幕在线免费看线人 | 超碰在线99 | 免费看毛片的网站 | 欧美日韩色 | 完全免费av | 中国免费毛片 | 综合色婷婷一区二区亚洲欧美国产 | 日韩中文字幕一区二区三区 | 亚洲第一av| 成人激情视频在线观看 | 国产免费一级片 | 日本亚洲欧美 | 欧美成人极品 |