已知函數f(x)=的圖象過原點,且關于點(-1,2)成中心對稱.
(1)求函數f(x)的解析式;
(2)若數列{an}滿足a1=2,an+1=f(an),試證明數列為等比數列,并求出數列{an}的通項公式.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-x+log2.
(1)求f()+f(-
)的值.
(2)當x∈(-a,a],其中a∈(0,1),a是常數時,函數f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如果對任意實數x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+
+
+…+
+
+
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某興趣小組要測量電視塔AE的高度H(單位:m).如示意圖,垂直放置的標桿BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.
(1)該小組已測得一組α,β的值,算出了tan α=1.24,tan β=1.20,請據此算出H的值;
(2)該小組分析若干測得的數據后,認為適當調整標桿到電視塔的距離d(單位:m),使α與β之差較大,可以提高測量精度.若電視塔的實際高度為125 m,試問d為多少時,α-β最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經市場調查,某旅游城市在過去的一個月內(以30天計),旅游人數f(t)(萬人)與時間t(天)的函數關系近似滿足f(t)=4+,人均消費g(t)(元)與時間t(天)的函數關系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時間t(1≤t≤30,t∈N*)的函數關系式;
(2)求該城市旅游日收益的最小值(萬元).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=,x∈[-1,1],函數g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實數m、n同時滿足下列條件:
①m>n>3;
②當h(a)的定義域為[n,m]時,值域為[n2,m2]?若存在,求出m、n的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若函數f(x)對任意的實數x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,則稱函數f(x)是區間D上的“平緩函數”.
(1)判斷g(x)=sin x和h(x)=x2-x是不是實數集R上的“平緩函數”,并說明理由;
(2)若數列{xn}對所有的正整數n都有|xn+1-xn|≤,設yn=sin xn,求證:|yn+1-y1|<
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
上海某化學試劑廠以x千克/小時的速度生產某種產品(生產條件要求),為了保證產品的質量,需要一邊生產一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是
元.
(1)要使生產運輸該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產運輸900千克該產品獲得的利潤最大,問:該工廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com