已知函數(shù)
,其中
.
(Ⅰ)當(dāng)時,求曲線
在點
處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間與極值.
;
在區(qū)間
,
內(nèi)為增函數(shù),在區(qū)間
內(nèi)為減函數(shù).
函數(shù)在
處取得極大值
,且
.
函數(shù)在
處取得極小值
,且
當(dāng)時,
,
,
又,則
.
所以,曲線在點
處的切線方程為
,
即.
(Ⅱ)解:.
由于,以下分兩種情況討論.
(1)當(dāng)時,令
,得到
,
,
當(dāng)變化時,
的變化情況如下表:
| | | | | |
| | 0 | | 0 | |
| ↘ | 極小值 | ↗ | 極大值 | ↘ |
所以在區(qū)間
,
內(nèi)為減函數(shù),在區(qū)間
內(nèi)為增函數(shù)
故函數(shù)在點
處取得極小值
,且
,
函數(shù)在點
處取得極大值
,且
.
(2)當(dāng)時,令
,得到
,
當(dāng)變化時,
的變化情況如下表:
| | | | | |
| | 0 | | 0 | |
| ↗ | 極大值 | ↘ | 極小值 | ↗ |
所以在區(qū)間
,
內(nèi)為增函數(shù),在區(qū)間
內(nèi)為減函數(shù).
函數(shù)在
處取得極大值
,且
.
函數(shù)在
處取得極小值
,且
科目:高中數(shù)學(xué) 來源: 題型:
(08年臨沂市質(zhì)檢一文)(14分)已知函數(shù)(其中a>0),且
在點(0,0)處的切線與直線
平行。
(1)求c的值;
(2)設(shè)的兩個極值點,且
的取值范圍;
(3)在(2)的條件下,求b的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中
是自然對數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)(其中
是實數(shù)常數(shù),
)
(1)若,函數(shù)
的圖像關(guān)于點(—1,3)成中心對稱,求
的值;
(2)若函數(shù)滿足條件(1),且對任意
,總有
,求
的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),
,
,且對任意
時,不等式
恒成立,求負(fù)實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆陜西省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)(其中
)的圖象如圖(上)所示,則函數(shù)
的圖象是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com